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Goodness-of-�t disparity statistics are de�ned as appropriately scaled �-disparities or �-divergences of
quantized hypothetical and empirical distributions. It is shown that the classical Pearson-type statistics
are obtained if we quantize by means of hypothetical percentiles, and that new spacings-based disparity
statistics are obtained if we quantize by means of empirical percentiles. The main attention is paid to
the asymptotic properties of the new disparity statistics and their comparisons with the spacings-based
statistics known from the literature. First the asymptotic equivalence between them is proved, and then
for the new statistics a general law of large numbers is proved, as well as an asymptotic normality theo-
rem both under local and �xed alternatives. Special attention is devoted to the limit laws for the power
divergence statistics of orders � 2 R. Parameters of these laws are evaluated for � 2 (�1;1) in a closed
form and their continuity in � on the subinterval (�1=2;1) is proved. These closed form expressions are
used to compare local asymptotic powers of the tests based on these statistics, which allows to extend
previous asymptotic optimality results to the class of power divergence statistics. Tables of values of the
asymptotic parameters are presented for selected representative orders of � > �1=2:
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1 Data and their statistical models

In this chapter we consider the explanation of observed data x1; x2; :::; xn statistically as a sequence
of independent outcomes from a statistical model. Our aim is to review and extend the criteria of
goodness-of-�t of the model and data, and to study their properties and applications in decisions about
the acceptability of concrete models for concrete data.

Let us start with the example of data �rst studied by Pearson (1894), which represent measurements
of the ratio of the forehead to body of n = 1000 crabs. Pearson partitioned the original domain of
measurements (a; b) = (0:5795; 0:6995) into intervals of equidistant size 0.004 and counted the frequency
for each interval. Table 1.1 gives the measurement values vj represented by midpoints of the intervals
and the corresponding frequencies 'j for 1 � j � 30.

Table 1.1 Ratio of the forehead to body of 1000 crabs

Value Freq. Value Freq. Value Freq. Value Freq. Value Freq.
0:5815 1 0:5855 3 0:5895 5 0:5935 2 0:5975 7
0:6015 10 0:6055 13 0:6095 19 0:6135 20 0:6175 25
0:6215 40 0:6255 31 0:6295 60 0:6335 62 0:6375 54
0:6415 74 0:6455 84 0:6495 86 0:6535 96 0:6575 85
0:6615 75 0:6655 47 0:6695 43 0:6735 24 0:6775 19
0:6815 9 0:6855 5 0:6895 0 0:6935 1 0:6975 0
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As second example we use the data studied recently by Ning, Gao and Dudewicz (2008) which are
results of measurements of cadmium concentrations in the kidney cortex of n = 43 horses. These are
presented in Table 1.2 below.

Table 1.2 Amounts of cadmium in horse kidneys

11.9 16.7 23.4 25.8 25.9 27.5 28.5 31.1 32.5 35.4 38.3
38.5 41.8 42.9 50.7 52.3 52.5 52.6 54.5 54.7 56.6 56.7
58.0 60.8 61.8 62.3 62.5 62.6 63.0 67.7 68.5 69.7 73.1
76.0 76.9 77.7 78.2 80.3 93.7 101.0 104.5 105.4 107.0 -

Statistical models are probability distributions on data spaces X . A general probability distribution
is speci�ed by a probability measure (brie�y, p.m.) P de�ned on appropriate subsets of X . The data
spaces of the examples in Tables 1.1 and 1.2 are the hal�ines (0;1). Throughout this chapter we restrict
ourselves to real valued data with the data space being an interval X = (a; b) � R. Then each probability
measure P is uniquely speci�ed by the distribution function (brie�y, d.f.)

F (x) = P ((�1; x]); x 2 R

We restrict ourselves to statistical models with increasing and continuously di¤erentiable d.f.�s F (x) on
the data space : These are uniquely speci�ed by the positive continuous probability density functions
(brie�y, p.d.f.�s)

f(x) =
dF (x)

dx
x 2 (a; b)

as well as by the increasing percentile functions (brie�y, p.f.�s)

Q(y) = F�1(y) (i.e. x 2 [a; b] such that F (x) = y); y 2 [0; 1]

where
Q(0) = a and Q(1) = b

due to the assumption that F (x) is increasing on (a; b).Therefore the observed data x1; x2; :::; xn are
interpreted as realizations of independent copies X1; X2; :::; Xn of a random variable X which can be
speci�ed equivalently by a p.m. P on X or a d.f. F (x) on R or a p.d.f. f(x) on the data space (a; b), or
by a p.f. Q(y) on the percentile space [0; 1].

The data x1; x2; :::; xn themselves can be represented by the so-called empirical probability mea-
sure (brie�y, e.p.m.)

Pn =
1

n

nX
i=1

�xi (1.1)

on the data space X = (a; b) where � denotes the Dirac probability measure, or by the related empirical
distribution function (brie�y, e.d.f.)

Fn(x) = Pn((�1; x)) =
1

n

nX
i=1

I(x � xi) (1.2)

on R where I denotes the indicator function. Both these representations are unique up to the ordering of
the data. In other words, Pn as well as Fn are one-to-one related to the order statistic (xn:1; xn:2; :::; xn:n)
of the data vector (x1; x2; :::; xn): The loss of order means no loss of statistical information, because the
order statistics are known to be statistically su¢ cient for the statistical models independent identically
distributed (i.i.d.) observations (cf. Lehmann and Romano (2005)).

An alternative form of presentation of the data x1; x2; :::; xn is by the histogram fn(x) on the data
space (a; b). This is the density of the restriction of the e.p.m. Pn on the algebra generated by the k + 1
intervals obtained by slicing (a; b) at the cutpoints

a = c0 < c1 < ::: < ck < ck+1 = b:
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Figure 1.1: Normal approximation of the crab data from Table 1.1.

Then for every x 2 [cj ; cj+1)
fn(x) = #xi 2 [cj ; cj+1):

For example, the frequencies 'j of Table 1.1 de�ne the histogram

fn(x) = 'j for x 2 [cj ; cj+1) (1.3)

where
cj = 0:5795 + 0:004 � j for 0 � j � 30 (1.4)

are uniform cutpoints of the interval (a; b) = (0:5795; 0:6995): The histogram form of presentation of data
is statistically su¢ cient in exceptional situations only.

Figure 1.1 compares the histogram (1.3) presenting the data from Table 1.1 with the p.d.f. f(x) of
the maximum likely normal model N(�,�2) of these data where

� =
1

1000

1000X
i=1

xi = 0:6447 and �2 =
1

999

1000X
i=1

(xi � �)2 = 0:00036: (1.5)

Figure 1.2 shows the e.d.f. Fn(x) of the data from Table 1.2 together with the d.f. F (x) of the normal
model N(�,�2) with sample mean and variance

� =
1

43

43X
i=1

xi = 57:2326 and �2 =
1

42

43X
i=1

(xi � �)2 = 574:98: (1.6)

In this chapter we deal with quality criteria for �tting various possible statistical models F (x) to the
data represented by e.d.f.�s Fn(x) including the asymptotic properties of these criteria for n!1. The
basic concepts and notations introduced in this section are used throughout all what follows below.
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Figure 1.2: Normal approximation of the horse data from Table 1.2.

2 Assessment of goodness-of-�t

Intuitively one can expect that all numerical goodness-of-�t criteria will be measures of distance, diver-
gence or disparity between on the one hand the empirical reality represented by a data-based p.m. P
or d.f. F; e.g. the e.p.m. Pn or e.d.f. Fn, and on the other the hypothetical statistical model given
by a p.m. P0 or a d.f. F0. In this chapter the terms distance, divergence and disparity have a speci�c
mathematical meaning which is speci�ed in the de�nitions below, where we deal primarily with p.m.�s
P; P0 rather than with d.f.�s F; F0.

De�nition 2.1 (i) By a distance D(P; P0) of p.m.�s P; P0 we mean a standard mathematical metric
distance, taking values in the interval [0;1), which is re�exive (i.e. D(P; P0) = 0 if and only if P = P0),
symmetric (i.e. D(P; P0) = D(P0; P )) and satis�es the triangle inequality (i.e. D(P; P0) � D(P; P1) +
D(P1; P0) for all p.m.�s P; P0; P1).

(ii) A divergence (more precisely, an information-theoretic divergence) D(P; P0) is a re�exive
functional taking values in the interval [0;1) and satisfying the information processing law. To formulate
this law, let T : X ! Y be a mapping describing the results of processing the data x from the observation
space X towards another space Y, with y = T (x). The information processing law says that no processing
rule T can increase the divergence, in symbols

D(PT�1; P0T
�1) � D(P; P0); (2.1)

with the equality being valid if and only if T is statistically su¢ cient for P; P0.
(iii) A disparity of p.m.�s P; P0 is a nonnegative functional D(P; P0) which is re�exive in the above
sense.

Convention 2.1 Throughout the chapter we denote by P; P0 an arbitrary pair of probability measures
on a general observation space X . They will be represented by means of their p.d.f.�s

p =
dP

d�
and p0 =

dP0
d�

(2.2)
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with respect to (w.r.t.) a dominating measure � on X (in symbols, P � p; P0 � p0). The only restriction
imposed on the hypothetical model P0 is the positivity of p0 almost everywhere w.r.t. �.

Continuous case. If X = (a; b) � R then the p.m.�s (P; P0) are in a one-to-one manner represented
by the d.f.�s (F; F0); and for absolutely continuous F; F0 and Lebesque measure � it holds that

p = f and p0 = f0 (2.3)

where (f; f0) are the usual p.d.f.�s of (F; F0) (in symbols, F � f; F0 � f0). As stated above, we assume
f0 > 0 on (a; b).

Discrete case. If X = (1; 2; :::; k), then the densities (p; p0) of (P; P0) w.r.t. the counting measure
�(1) = �(2) = ::: = �(k) = 1 reduce to the stochastic vectors

p = (pj := P (j) : 1 � j � k); p0 = (p0j := P0(j) : 1 � j � k); (2.4)

(in symbols, P � p; P0 � p0). As stated above, we assume p0j > 0 for all 1 � j � k.

2.1 Special distances, divergences and disparities

(a) The L1-distance

L1(P; P0) =

Z
jp� p0jd� for P � p; P0 � p0 (2.5)

is an example of a distance on the class of all p.m.�s which satis�es only partly the information processing
law. Namely it satis�es inequality (2.1) but fails to satisfy the necessary condition for equality. To see
this it su¢ ces to consider the discrete p.m.�s P � p and P0 � p0 given by (2.4), where

L1(P; P0) = L1(p;p0) = jjp� p0jj1 =
kX
j=1

jpj � p0j j: (2.6)

Example 2.1 The binary coding T : X ! Y = f1; 0g of the ternary observations x 2 X = f1; 2; 3g
de�ned by

T (1) = 1 and T (2) = T (3) = 0 (2.7)

signi�cantly reduces the information for discrimination between the discrete models

P = (1=10; 5=10; 4=10) and P0 = (9=10; 1=10; 0):

Indeed, the discrimination rule

�(1) = P0 and �(2) = �(3) = P

based on the original uncoded observations from X = f1; 2; 3g is errorless if x = 3 and the discrimination
errors for the remaining observations x take place with the probability 1/10. On the other hand, arbitrary
discrimination rule � : Y ! fP; P0g based on the encoded data from Y = f1; 0g admits discrimination
errors with the probability 9/10. This reduction of discernibility is caused by the loss of information due
to the coding which is evidently not a statistically su¢ cient transformation. However, this evidence is
not re�ected by the L1- distance which remains una¤ected by the coding, namely

L1((1=10; 5=10; 4=10); (9=10; 1=10; 0)) = L1((1=10; 9=10); (9=10; 1=10)) = 8=5:

Note that, nevertheless, the L1-distance L1(fn; f) is widely used as a goodness-of-�t criterion between
the model p.d.f.�s f and histogram-like representations fn of the observed data, since being introduced
to the nonparametric statistics by Devroye and Györ� (1985).
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(b) The L2-distance

L2(P; P0) =

�Z
(p� p0)2d�

�1=2
for P � p; P0 � p0

does not satisfy the information processing law in the sense that processing of the observations can
increase the L2-distance between the models P; P0. To this end it su¢ ces to consider the discrete p.m.�s
P � p and P0 � p0 given by (2.4) where

L2(P; P0) = L2(p;p0) = jjp� p0jj2 =

0@ kX
j=1

(pj � p0j)2
1A1=2

: (2.8)

The mentioned violation of the information processing law can be veri�ed by taking k = 3 and the models
P � p = (0; 1=2; 1=2) and P0 � p0 = (1=2; 1=4; 1=4) on the observation space X = f1; 2; 3g. Applying
the coding (2.7) to the observations x 2 X we obtain

L2(PT
�1; P0T

�1) =
p
1=2 >L2(P; P0) =

p
3=8:

This �aw of the L2- distance justi�es the preference of the above-mentioned L1- distance method over
the L2-method and underlines the importance of the L1- method in statistical research.

(c) The Kolmogorov distance

K(F; F0) = sup
x2R
jF (x)� F0(x)j (2.9)

introduced by Kolmogorov (1933) is the distance in the above stated metric sense and de�nes the well
knownKolmogorov-Smirnov goodness-of-�t statistic Tn =

p
nK(Fn; F0) (Smirnov (1948); for more

see Lehmann and Romano (2005)). Applicability of the Kolmogorov distance is restricted by the fact
that it contradicts the information processing law in a similar way as the L2-distance. A simple example
where

K(FT�1; F0T
�1) = 1 > K(F; F0) = 1=2

is obtained by using the p.d.f.�s

f(x) = I(�1 < x < �1=2) + I(0 < x < 1=2); (2.10)

f0(x) = I(�1=2 < x < 0) + I(1=2 < x < 1) (2.11)

and the data processing formula

T (x) = x+
1

2
[I(�1=2 < x < 0)� I(0 < x < 1=2)] (2.12)

which transforms the interval (�1=2; 0) on (0; 1=2) and vice versa. This formula is skew symmetric about
x = 0 and thus the data processing is reversible in the sense T�1 = T . The d.f.�s F; F0 for this example
are shown in Figure 2.3 and their modi�cations resulting from the data processing (2.12) in Figure 2.4.

For the special discrete binary p.m.�s

Px � px = (F (x); 1� F (x)) and P0x � p0x = (F0(x); 1� F0(x)) (2.13)

(2.9) and (2.6) imply

K(F; F0) =
1

2
sup
x2R

L1(Px; P0x):

Similar relations take place for other measures of goodness-of-�t between F; F0 and their one-point ap-
proximations F (x); F0(x) formally represented by the binary p.m.�s (2.13). We mention the best known
of them.
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Figure 2.3: Distribution functions F; F0:

(d) The Pearson divergence is given by the formula

�2(P; P0) =

Z
(p� p0)2

p0
d� for P � p; P0 � p0 (2.14)

which in the discrete case considered in (2.4) reduces to

�2(p;p0) =
kX
j=1

(pj � p0j)2
p0j

: (2.15)

It de�nes the well-known Pearson �2 goodness-of-�t test statistic

Tn = n�2(pn;p0) =

kX
j=1

(npnj � np0j)2
np0j

=

kX
j=1

('nj � np0j)2

np0j
(2.16)

for testing hypotheses H0 : P0 on the basis of observations represented by the e.p.m. Pn where p0 and
pn are the restrictions of the hypothetical and empirical p.m.�s P0 and Pn on the test cells Cj = [cj ; cj+1)
and 'nj = #xi 2 Cj are the observed cell frequencies for 1 � j � k. The Pearson divergence is a
divergence in the rigorous sense stated above, but it is not a distance since it is neither symmetric nor
satis�es the triangle inequality. Of course, the same holds for the reversed Pearson divergence

R�2(P; P0) := �2(P0; P ): (2.17)

(e) Another example of a divergence is the LeCam divergence

LC(P; P0) =

Z
(p� p0)2
p+ p0

d� for P � p; P0 � p0 (2.18)

which in the discrete case considered in (2.4) reduces to

LC(p;p0) =
kX
j=1

(pj � p0j)2
pj + p0j

: (2.19)
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Figure 2.4: Distribution functions FT�1; F0T�1:

Since it is a divergence in the sense of De�nition 2.1, all its roots are divergences in the sense of the same
de�nition too but, as proved by Kafka, Österreicher and Vincze (1991), the square root

p
LC(P; P0) is

distinguished by being a metric distance in the space of p.m.�s P; P0.

(f) In the discrete case considered in (2.13) relations (2.15) and (2.13) imply

�2(Px; P0x) =
(F (x)� F0(x))2

F0(x)
+
(F (x)� F0(x))2
1� F0(x)

=
(F (x)� F0(x))2
F0(x)(1� F0(x))

:

Since �2(Px; P0x) is a disparity of binary distributions Px; P0x for all x 2 R, the integral over R,

AD(F; F0) =

Z
�2(Px; P0x)dx =

Z
(F (x)� F0(x))2
F0(x)(1� F0(x))

dx; (2.20)

is a disparity of d.f.�s F; F0 in the above stated sense. We call it the Anderson-Darling disparity
because its scaled version

Tn = n �AD(Fn; F0) = n

Z
(Fn(x)� F0(x))2
F0(x)(1� F0(x))

dx (2.21)

is the well known Anderson-Darling goodness-of-�t statistic for testing the hypothesis that the
data represented by the e.d.f. Fn were generated by the d.f. F0 (hypothesis H0).

(g) Similarly, we call

CM(F; F0) =

Z
�2(Px; P0x)F0(x)(1� F0(x))dx =

Z
(F (x)� F0(x))2dx (2.22)

the Cramér-von Mises disparity because it is a disparity of p.d.f.�s F; F0 in the above de�ned sense
and

Tn = n � CM(Fn; F0) = n

Z
X
(Fn(x)� F0(x))2dx (2.23)

is the Cramér-von Mises goodness-of-�t statistic for testing the hypothesis H0 = F0 under the
empirical evidence Fn:
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The goodness-of-�t statistics mentioned in (f) and (g) were introduced by von Mises (1947) and
Anderson and Darling (1954) (see also Darling (1957)). We refer in this respect to pp. 58�64 in Ser�ing
(1980) or to D�Agostino and Stephens (1986).

2.2 Examples

The divergences and disparities will be more systematically studied in the next section. It the remainder
of this section we apply the goodness-of-�t criteria introduced in this section to the data from Tables 1.1
and 1.2.

Example 2.2.1 Consider the discrete e.p.m. pn = (pn1; :::; pn;30) representing the data given by the
frequencies 'j of Table 1.1 and de�ned by the formula

pnj = 'j10
�3; 1 � j � 30: (2.24)

In addition to the normal model N(�,�2) for these data given by (1.5), we consider the mixed normal
model

MixN(�; �1; �2; �
2
1; �

2
2) = �N(�1; �

2
1) + (1� �)N(�2; �22)

for the parameters

� = 0:5; (�1; �
2
1) = (0:6343; 0:000361); (�2; �

2
2) = (:6551; 0:00014641)

used by Pearson (1894). The third model considered by us is the mixed generalized lambda model

MixGLD(�; �; #) = �GLD(�) + (1� �)GLD(#)

from p. 88 of Ning, Gao and Dudewicz (2008) where the generalized lambda component models are given
by the percentile functions

Q�(y) = �1 +
y�3 � (1� y)�4

�2
and Q#(y) = #1 +

y#3 � (1� y)#4
#2

:

for the parameters

� = 0:802

� = (0:6415; 13:218; 0:135; 0:205) (2.25)

# = (0:6564; 11:328; 0:55; 0:15):

Each d.f. F0 2 fN(�,�2), MixN(�; �1; �2; �21; �22); MixGLD(�; �; #)g represents a di¤erent hypothesis
about the stochastic source of the data from Table 1.1. Each one de�nes a hypothetical p.d.f. f0 and
a hypothetical discrete p.m. p0 = (p01; :::; p0k) obtained by quantization of the observation space X =
(a; b) � R into k cells. In the present example (a; b) = (0:5795; 0:6995) and we consider quantization into
k = 30 partition intervals symmetric about the centers vj given in Table 1.1 leding to p0 = (p01; :::; p0;30)
with the components

p0j =

Z vj+0:002

vj�0:002
f0(x)dx = F0(vj + 0:002)� F0(vj � 0:002): (2.26)

Table 2.2.1 presents the values of the distance or divergence criteria L1(p;p0); L2(p;p0); �
2(p;p0) and

LC(p;p0) given by (2.6), (2.8), (2.15) and (2.19) for the e.p.m. p = pn given by (2.24) and hypothetical
p.m.�s p0 given by (2.26). The estimate mixGLD was evaluated by the package GLDEX of the program R
(project CRAN) by Steve Su. For description of the method and further citations we refer to http://cran.r-
project.org/web/packages/GLDEX/GLDEX.pdf.
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Model L1 L2 Pearson LeCam
Normal 0.17476 0.047971 0.075765 0.034877

Mix of Normals 0.0958 0.025351 0.020596 0.011084
Mix of Lambdas 0.24636 0.063542 0.14132 0.054918

Table 2.2.1 Values of several criteria for the models N, MixN and MixGLD
of the data from Table 1.1.

We see from this table that all four criteria are isotone in the sense that the MixN model �ts best the
data and the MixGLD �ts worst. This can be explained by the fact that the criterion for selection of the
mixed models was the best possible approximation of the �rst 4 moments of the e.d.f. and the MixGLD
model is in this sense better than the MixN, as observed in Ning, Gao and Dudewicz (2008). The normal
model approximates the �rst 2 moments only and this allows it to approximate the data source better
in the sense of all four selected criteria. However, the relative di¤erences between the accuracies of the
models are evaluated by each criterion in a slightly di¤erent way. The relative di¤erence between N and
MixGLD is 20% through the prism of the L2, while the Pearson criterion evaluates the same di¤erence
as 100% larger. No simple recipe can be given for the choice of the most adequate criterion. It usually
requires a deep insight into the properties of the criteria and into the details of the studied application.

Example 2.2.2 Consider the e.d.f. Fn de�ned by the data of Table 1.2. In addition to the normal
model N(�,�2) for these data given by (1.6), we consider the generalized lambda models GLD(�) given
by the percentile function

Q�(y) = �1 +
y�3 � (1� y)�4

�2
for the parameters

� = (41:7897; 0:01134; 0:09853; 0:3606) (2.27)

obtained on p. 97 of Karian and Dudewicz (2000). We use also the mixed generalized lambda model

MixGLD(�; �; #) = �GLD(�) + (1� �)GLD(#)

with the component generalized lambda models given by the percentile functions

Q�(y) = �1 +
y�3 � (1� y)�4

�2
and Q#(y) = #1 +

y#3 � (1� y)#4
#2

:

for the parameters

� = 0:4

� = (57:8233; 0:0076; 0:1432; 0:1356) (2.28)

# = (56:2136; 0:0193; 0:4601; 0:4838)

introduced on p. 91 of Ning, Gao and Dudewicz (2008). The present models F0 2 fN(�,�2), GLD(�);
MixGLD(�; �; #)g di¤er from those considered in the previous example but, similarly as above, they
represent three di¤erent hypotheses about the sources of data from Table 1.2. Table 2.2.2 presents values
of the distance or disparity K(F; F0); AD(F; F0) and CM(F; F0) given by (2.9), (2.20) and (2.22) for the
d.f. F (x) = Fn(x) from Figure 1.2 and the present models F0(x): Distribution functions of the models
GLD and mixGLD were evaluated by the package GLDEX of the program R mentioned in Example 2.2.1.

Model K(Fn; F0) AD(Fn; F0) CM(Fn; F0)
Normal 0.45177 0.38039 0.05513
Lambda 0.07917 0.39040 0.06034

Mix of Lambdas 0.21747 78.4530 0.78635

Table 2.2.2 Values of several criteria for the models N, GLD and MixGLD
of the data from Table 1.2.
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The preferences attributed to the models by the criteria are in Table 2.2.3 below. We see from there
that the isotony similar to that observed in Table 2.2.1 takes place only for the Anderson-Darling and
Cramér-von Mises criteria and that their preferences contradict those resulting from the Kolmogorov
criterion. The extremely large value of the Anderson-Darling�s AD(Fn; F0) in Table 2.2.2 underlines
the importance of analysis of the criterion formulas and algorithms from the point of view of numerical
stability, i.e. resistence (robustness) with respect to small computational inaccuracies. In the AD(Fn; F0)
case, for x � 1 the empirical values Fn(x) are close to 1 while the program computes the hypothetical
values F0(x) by two orders closer to 1 without possibility to control the accuracy of computation. This
obviously results into the uncontrolled increase of values during numerical integration in the formula

AD(Fn; F0) =

Z
(Fn(x)� F0(x))2
F0(x)(1� F0(x))

dx (c.f. (2.21))

for x such that the numerator is of the order of 1 while the denominator is of the order < 10�2.

Criterion 1 2 3
K(Fn; F0) Lambda Mix of Lambdas Normal
AD(Fn; F0) Normal Lambda Mix of Lambdas
CM(Fn; F0) Normal Lambda Mix of Lambdas

Table 2.2.3 The orders of preferences in Table 2.2.2.

Better performance of the simple lambda than of the mix of lambdas observed in Table 2.2.3 can be
explained by the fact that the mix of lambdas is optimal in the sense of best approximation of the �rst
4 moments of the e.d.f. (c.f. Ning, Gao and Dudewicz (2008)). Similarly as mentioned above in the
comments on Table 2.2.1, the best �t of the several �rst moments does not mean the best �t of d.f.�s
which is measured by the goodness-of-�t criteria appearing in Tables 2.2.2 and 2.2.3. This is re�ected
also in the results of Section 8 where the �t of the models of this section and the data of Tables 1.1 and
1.2 is treated by the new criteria introduced in the next section.

3 Criteria of goodness-of-�t

This section studies more systematically those criteria of goodness-of-�t between the empirical evidence
represented by the e.d.f. Fn on the one hand and the hypothetical model speci�ed by its d.f. F0 on
the other, that are measures of dissimilarity D(Fn; F0) between the distribution functions Fn and F0.
Since Fn ! F0 a.s. for n ! 1 and, consequently, D(Fn; F0) ! 0 stochastically as n ! 1 for
reasonable dissimilarity measures D, the statistics Tn for testing the hypothesis H0 : F0 on the basis of
empirical evidence represented by Fn, are considered in the form Tn = mnD(Fn; F0): Here mn ! 1 is
an appropriate scaling sequence for which Tn tends to a limit distribution. The value Q(1��) of the p.f.
of this distribution is then used as a critical value of Tn for the asymptotically �-level test of hypothesis
H0. Examples were given in Section 2, e.g. the Kolmogorov distance K(Fn; F0) and corresponding
Kolmogorov-Smirnov statistic Tn =

p
nK(Fn; F0):

Similarly, if the empirical evidence is represented by a discrete distribution pn and the hypothetical
model is speci�ed by the discrete distribution p0 then the dissimilarity between the former and the
sequel is D(pn;p0) and the statistic for testing the hypothesis H0 : p0 is Tn = mnD(pn;p0). Examples
were given in Section 2, e.g. the Pearson distance �2(pn;p0) and the corresponding Pearson statistic
Tn = n�2(pn;p0):

Goodness-of-�t criteria are not only studied for e.d.f.�s Fn or related e.p.m.�s pn simply representing
the data sets fx1; x2; :::; xng in a straightforward manner (1.2), but also for more sophisticated models
F and p obtained by data-based statistical inference like e.g. those obtained by maximum likelihood
estimation. Therefore we deal in the rest of this section with arbitrary d.f.�s F and p.m.�s p:
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3.1 Disparities, divergences and metric distances

To unify the treatment of the situation when goodness-of-�t is considered for d.f.�s (F; F0) or p.m.�s
(p;p0), it is convenient to represent simultaneously both hypothetical models F0;p0 by the corresponding
general p.m.�s P0, and alternative models F;p by the corresponding general p.m.�s P: Thus we deal in
this subsection primarily with dissimilarity measures D(P; P0). We respect Convention 2.1 and use the
notations (2.2) - (2.4) introduced there.

We de�ne the class of dissimilarities of probability measures P; P0 on X by

D�(P; P0) =

Z
X
p0�

�
p

p0

�
d� for P � p; P0 � p0 (3.1)

generated by continuous functions � : (0;1) 7! [0;1) with continuous extension 0 � �(0) � 1, such
that the integral (3.1) exists. In particular, for arbitrary d.f. F and hypothetical d.f. F0 on an interval
observation space X = (a; b) � R,

D�(F; F0) =

Z b

a

f0(x)�

�
f(x)

f0(x)

�
dx for F � f; F0 � f0; (3.2)

and, in the discrete case, for

P � p = (p1; p2; :::; pk) and P0 � p0 = (p01; p02; :::; p0k) (3.3)

c.f. (2.4),

D�(P; P0) = D�(p;p0) =
kX
j=1

p0j�

�
pj
p0j

�
: (3.4)

Let us clarify for which functions � the dissimilarities (3.1) - (3.4) are disparities, divergences or
distances in the sense of the previous section. Denote by � the class of all di¤erentiable functions
� : (0;1) 7! R with continuous extension �(0) and the property

(�0(t)� �0(1))sign(t� 1) > 0 for all t 2 (0;1): (3.5)

Then the standardized version
~�(t) = �(t)� �(1)� �0(1)(t� 1) (3.6)

of �(t) is increasing in the domain t � 0 and decreasing in the domain t � 0, i.e. is positive for t 2 (0;1)
except for t = 1 where ~�(1) = 0. Therefore the integral

D~�(P; P0) =

Z
X
p0~�

�
p

p0

�
d� = D�(P; P0)� �(1) (3.7)

exists, takes on values in the closed interval [0;1], and the dissimilarity D~�(P; P0) is re�exive in the sense
that equality holds if and only if P = P0. Hence the expressions D~�(P; P0) are well-de�ned disparities,
and also the expressions D�(P; P0) are disparities up to shifts �(1). This justi�es to speak about all
dissimilarities D�(P; P0); D�(F; F0) and D�(p;p0) given by (3.1) - (3.4) for � 2 � as disparities in the
wide sense, transformed by constant shifts �(1) to disparities de�ned in the precise sense of the previous
section. Of course, the subset

�disp = f� 2 � : �(1) = 0g; �disp � �
de�nes proper disparities by (3.1) - (3.4).

Let �div be the class of di¤erentiable convex functions � : (0;1) 7! R with continuous extension �(0)
and strict convexity at t = 1. Then �(1) + �0(1)(t � 1) is the support straight line of the function �(t)
which is strictly smaller than �(t) at all t 6= 1 due to the strict convexity of �(t) at t = 1. However,
the assumed convexity of �(t) on the whole domain (0;1) means that the function (3.6) is increasing on
(1;1) and decreasing on (0; 1) so that (3.5) holds. Consequently,

�div � �disp ;
i.e. expression (3.7) is re�exive. As proved in Csiszár (1967) or Liese and Vajda (1987) (see also a new
statistical proof in Vajda and Liese (2006)), the disparities (3.7) with � 2 �div satisfy the information
processing law, i.e. they are divergences in the sense de�ned in the previous section.
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Example 3.1.1 The functions de�ned on (0;1) by

�0(t) = � ln t and �1(t) = t ln t (3.8)

with extensions �0(0) =1 and �1(0) = 0 satisfy condition (3.5). Thus they belong to � and de�ne the
wide-sense disparities

D1(P; P0) := D�1(P; P0) =

Z
X
p ln

�
p

p0

�
d� (3.9)

and

D0(P; P0) := D�0(P; P0) =

Z
X
p0 ln

�
p0
p

�
d� = D1(P0; P ): (3.10)

Since �i(1) = 0; both these functions belong to the subset �disp � �, so that (3.9) and (3.10) are proper
disparities. Further, both functions �i(t) are di¤erentiable and strictly convex on the domain (0;1).
Therefore they belong to �div and (3.9) and (3.10) are divergences. In fact, D1(P; P0) is known as
the information divergence or Kullback divergence, and D0(P; P0) is usually called the reversed
information divergence or reversed Kullback divergence. Note that

Tn = nD1(pn;p0) =
kX
j=1

npnj ln
npnj
np0j

=
kX
j=1

'nj ln
'nj
np0j

(3.11)

is the well-known likelihood ratio test statistic for testing the hypothesis H0 : P0 on the basis of observa-
tions represented by the e.p.m. Pn, where p0 and pn are restrictions of the hypothetical and empirical
p.m.�s P0 and Pn to the test cells Cj = [cj ; cj+1), and 'nj = #xi 2 Cj are the observed cell frequencies
for 1 � j � k.

Example 3.1.2 The functions de�ned on (0;1) by

���1(t) =
1

t
and ��2(t) = t2

with extensions ���1(0) =1 and ��2(t) = 0 satisfy condition (3.5). Thus they belong to � and de�ne the
wide-sense disparities

�D�1(P; P0) := D���1
(P; P0) =

Z
X

p20
p
d�

and
�D2(P; P0) := D��2

(P; P0) =

Z
X

p2

p0
d� = �D�1(P0; P ):

Since ���1(1) = ��2(1) = 1; the functions ��1(t) := ���1(t) � 1 and �2(t) = ��2(t) � 1 de�ne the proper
disparities

��1(P; P0) := D��1(P; P0) =

Z
X

(p� p0)2
p

d� (3.12)

and

�2(P; P0) := D�2(P; P0) =

Z
X

(p� p0)2
p0

d�. (3.13)

The same proper disparities are de�ned by the standardized versions

�+�1(t) = ��1(t) + t� 1 =
(t� 1)2

t
and �+2 (t) = �2(t) + 2(1� t) = (t� 1)2

belonging to �disp � �. Of course, the functions ��1(t) and �2(t) as well as �+�1(t) and ��2 (t) belong to
�div and de�ne the Pearson divergences of Section 2.1, part d (brie�y 2.1.(d)),

�2(P; P0) = �2(P; P0) (cf. (2.14)) and ��1(P; P0) = R�2(P; P0) (cf. (2.17)).
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Example 3.1.3 Power divergences The functions de�ned on (0;1) by

��(t) =
t� � 1
�(�� 1) for the powers � 2 R� f0; 1g (3.14)

and for the remaining powers by

�1(t) = t ln t and �0(t) = � ln t (cf. Example 3.1.1)) (3.15)

belong to � de�ned in Example 3.1.1. They satisfy the condition ��(1) = 0 so that they belong also to
the subset �disp � �. Since they are di¤erentiable and strictly convex on (0;1); they belong in fact also
to �div and de�ne the divergences

D�(P; P0) := D��(P; P0) =

R
X p

�p1��0 d�� 1
�(�� 1) for � 2 R� f0; 1g (3.16)

and

D1(P; P0) := D�1(P; P0) =

Z
X
p ln

�
p

p0

�
d� = D0(P0; P ) := D�0(P0; P ) for � 2 f0; 1g: (3.17)

The classes of modi�ed power divergences �D�(P; P0); � > 0 are one-to-one related to the logarithmic
power divergences

R�(P; P0) =
ln[�(�� 1)D�(P; P0) + 1]

�� 1 =
ln
R
X p

�p1��0 d�

�� 1 ; � > 0 (3.18)

of Rényi (1961), where R1(P; P0) = lim�"1R�(P; P0) = D1(P; P0): The slightly restricted versions
�D�(P; P0); � > 0; were used in the 1960-ies and 1970-ies by several authors, e.g. by Perez (1967).
The essential parts of the power divergences

H�(P; P0) = �(�� 1)D�(P; P0) + 1 =

Z
X
p�p1��0 d�; � 2 R (3.19)

called Hellinger integrals were used e.g. by Cherno¤ (1952), Vajda (1971) and Liese (1982). The
Hellinger integrals are skew symmetric about � = 1=2 in the sense that

H�(P; P0) = H1��(P0; P ); � 2 R: (3.20)

The power divergences (3.16), (3.17) are skew symmetric in the same sense, i.e.

D�(P; P0) = D1��(P0; P ); � 2 R: (3.21)

The skew-symmetrization of the formerly used divergences �D�(P; P0); � > 0; resulting into the class of
power divergences (3.16),(3.17) was introduced by Cressie and Read (1984), and the power divergences are
in the last two decades used as standard representatives of the whole class of divergences D�(P; P0); � 2
�div . A similar skew-symmetrization of the Rényi divergences (3.18) resulting into the formula

R�(P; P0) =
ln
R
X p

�p1��0 d�

�(�� 1) ; � 2 R (3.22)

was introduced by Liese and Vajda (1987) who used them among other as auxiliary tools for rigorous
proofs of a number of general properties of the power divergences (3.21).

Remarks (i) Since the functions (3.15) are the same as in Example 3.1.1, the members D1(P; P0)
and D0(P; P0) of the power divergence family are the Kullback and reversed Kullback divergences
introduced in Example 3.1.1.

(ii) Further,
D�(P; P0) = ��(P; P0)=2 for � = �1 and � = 2
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where on the right are the disparities introduced in Example 3.1.2. Therefore 2D2(P; P0) and 2D�1(P; P0)
are the Pearson and reversed Pearson divergences of 2.1(d)).

(iii) Another well-known member of the family of power divergences not mentioned before is the
Hellinger divergence

D1=2(P; P0) = 4H(P; P0) = 4

Z
X
(
p
p�pp0)2 d�; (3.23)

which in the discrete case (2.4) reduces to

D1=2(p;p0) = 4 = 4
kX
j=1

�p
pj �

p
p0j
�2
: (3.24)

The divergenceH(p;p0) was introduced by Matusita (1956) but it is better known as squared Hellinger
distance. Indeed, p

H(P; P0) = jj
p
p�pp0jj2

is the L2-distance of the square roots of p.d.f.�s and, as such, is a metric distance. Of course,
p
D1=2(p;p0)

is a metric distance too.

(iv) The expression

Tn = nD1=2(pn;p0)=2 = 2n
kX
j=1

�p
pj �

p
p0j
�2

(3.25)

is known as the Freeman-Tukey statistic for testing the hypothesis H0 : P0 on the basis of observations
represented by the e.p.m. Pn, where p0 and pn are the restrictions of the hypothetical and empirical
p.m.�s P0 and Pn on the test cells Cj = [cj ; cj+1) for 1 � j � k.
(v) The square root

p
D1=2(p;p0) is the only member among all powers of all power divergences which

is a distance in the sense introduced above (cf De�nition 2.1). The unicity follows already from the fact
that D1=2(P; P0) is the only power divergence which is symmetric in the variables P; P0.

(vi) The nonnegative standardized versions of the functions (3.14) are

~��(t) =
t� � �(t� 1)� 1

�(�� 1) for � 2 R� f0; 1g (3.26)

and those corresponding to (3.15) are the limits

~�1(t) = t ln t� t+ 1 and ~�0(t) = � ln t+ t� 1 (3.27)

of ~��(t) for �! 0 and �! 1. Obviously

D~��
(P; P0) = D��(P; P0) = D�(P; P0) for all � 2 R: (3.28)

3.2 Metricity and robustness

The power divergences D�(P; P0); � 2 R; do not represent all aspects of the class of all divergences
D�(P; P0); � 2 �div . For example,

p
D1=2(P; P0) is the only power divergence which is a metric distance.

This might suggest that the metricity of a divergence is a rare property. But, in fact, the class of all
divergences contains uncountably many of them with this property. For example, all functions

'�(t) =
sign �
1� �

h
(t1=� + 1)� � 2��1(t+ 1)

i
for �1 < � � 2 (3.29)

with the terms for � = 0 and � = 1 obtained by the continuous extension rule as

'0(t) = jt� 1j=2 and '1(t) = t ln t+ (t+ 1) ln
2

t+ 1
(3.30)
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belong to �div : The square roots
q
D�� (P; P0) of the corresponding divergences are metric distances (see

Vajda (2009)). LeCam�s divergence of 2.1.(g) is among them, since

D'�1(P; P0) = LC(P; P0):

The total variation function '0(t) formally does not belong to �div because it is not di¤erentiable at
t = 1, but this may be cured by de�ning this derivative as the mean of the left- and right-hand derivatives,

'00(1) =
'00(1+) + '

0
0(1�)

2
=
1

2
� 1
2
= 0: (3.31)

Let us now look at the robustness of the testing or estimation based on the disparity statistics

T�;n = nD�(Pn; P0); � 2 �disp

re�ecting the proximity of the hypothetical p.m. P0 and e.p.m. Pn; or their special forms

T�;n = nD�(pn;p0) =
kX
j=1

np0j�

�
npnj
np0j

�
=

kX
j=1

np0j�

�
'nj
np0j

�
; � 2 �disp

using restrictions p0 and pn of P0 and Pn on the test cells Cj = [cj ; cj+1) where 'nj = #xi 2 Cj are the
observed cell frequencies for 1 � j � k.
If � 2 �div , i.e. if D�(P; P0) is a divergence then �(t) is always unbounded and its derivative �

0(t)
is usually unbounded on the domain (0;1). For example, all power divergence functions ��(t) as well
as their derivatives �0�(t) are unbounded. The statistical disparity measures were introduced by Lindsay
(1994) and more systematically investigated by Menéndes et al. (1998). In these papers it is argued
that the robustness of statistical inference based on minimization of disparities between models requires
bounded generating functions � 2 �disp , or at least bounded derivatives �0, because these two functions
represent the criterion function and the in�uence function of robust statistics. Thus, from the point
of robustness of statistical decisions based on disparity statistics, the attention is concentrated on the
functions �(t � 1) 2 �disp for the classical criterial �-functions of robust statistics leading to bounded
in�uence functions  (t) proportional to the derivatives �0(t).

Example 3.2.1 A classical example is the family of Huber �-functions

�k(t) = I(jtj � k)t2; k > 0

smoothly extended as linear functions in the domain ft 2 R : jtj > kg with the constantly bounded
in�uences  k(t) = �0k(t) = 2k of the observations t from this domain (see Hampel et al. (1986) or
Jureµcková and Sen (1996)). The Huber functions de�ne the family

�k(t) = �k(t� 1); k > 0 (3.32)

of functions from �div with the bounded derivatives

 k(t) = �0k(t) = 2[(t� 1)I(jt� 1j � k) + kI(jt� 1j > k); k > 0: (3.33)

These functions generate the family of robust divergences D�k(P; P0); k > 0.

Example 3.2.2 Another classical example is the family of �-functions

��(t) = (�� 1)tI(t < 0) + �tI(t > 0); 0 < � < 1

leading to the robust statistical inference based on the so-called regression quantiles (see Jureµcková
and Sen (1996)). The total variation generating function is the special case

'0(t) = �1=2(t� 1):
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We put
��(t) = ��(t� 1); 0 < � < 1 (3.34a)

and similarly as in (3.31), we use the generalized form

�0�(1) =
�0�(1+) + �

0
�(1�)

2
= �� 1

2
(3.35)

to extend the derivative �0�(t) of the family of robust divergence generating functions to t = 1 in order
to achieve the formal validity for including this family in �div . The derivatives

 �(t) = �0�(t) = (�� 1)I(t < 1) + �I(t > 1); 0 < � < 1 (3.36)

of these functions are bounded on the domain (0;1) so that the functions (3.34a) generate the family of
robust divergences D��(P; P0); 0 < � < 1.

4 Disparities based on partitions

In the previous section we assessed goodness-of-�t between two statistical models given by p.m.�s P and
P0 by the disparity, divergence or distance

D�(P; P0) =

Z
X
p0�

�
p

p0

�
d� (4.1)

where the concrete type depends on the extended real valued function � 2 � and, according to Convention
2.1, p; p0 are densities of P; P0 given by (2.2) and p0 is positive on X . De�nition (2.2) of the densities
p; p0 means that for every A � X

P (A) =

Z
A

pd� and P0(A) =

Z
A

p0d� for � = P + P0: (4.2)

In some situations it is necessary to restrict the p.m.�s P and P0 on a partition P = fC1; :::; Ckg of
X into disjoint cells Cj , resulting into the quantizations

p = (pj := P (Cj) : 1 � j � k) and p0 = (p0j := P0(Cj) : 1 � j � k) (4.3)

of these p.m.�s and to the reduced disparity, divergence or distance

D�(p;p0) =
kX
j=1

p0j�

�
pj
p0j

�
: (4.4)

Partitioning of the observation space means that observations x 2 X are replaced by the indices of the
partition sets containing these observations, i.e. by

T (x) 2 f1; 2; :::; kg where T�1(j) = Cj for 1 � j � k: (4.5)

Among other this means that if � generates the divergence D�(P; P0) , then the information processing
law implies that

D�(p;p0) � D�(P; P0) (4.6)

where the equality holds if and only if the partition P is statistically su¢ cient for (P; P0).

The situation described above takes place when the �rst of the p.m.�s is an e.p.m., i.e. when it is
uniform on the observation support set Sn = fx1; x2; :::; xng according to (1.1). Then (4.2) holds for

p(x) = pn(x) := I(x 2 Sn) and p0(x) := I(x =2 Sn)
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because

(Pn + P0)(Sn \A) = Pn(A) and (Pn + P0)((X � Sn) \A) = Pn(A) for every A � X :

This, together with the fact that Pn is supported by Sn and P0 is supported by X � Sn implies that

D�(Pn; P0) =

Z
X
p0 �

�
pn
p0

�
d(Pn + P0)

=

Z
Sn

I(x =2 Sn) �
�
I(x 2 Sn)
I(x =2 Sn)

�
dPn

+

Z
X�Sn

I(x =2 Sn) �

�
I(x 2 Sn)
I(x =2 Sn)

�
dP0

=

Z
Sn

0 �

�
1

0

�
dPn +

Z
X�Sn

1 �

�
0

1

�
dP0

= lim
t!1

� (t)

t
+ � (0) ; (4.7)

where in the last line we replaced the unde�ned expression by the limit on the basis of the principle of
continuous extension. The existence of the limit is guaranteed only for convex �, i.e. for divergences,
but even then the value (4.7) is constant, often in�nite (for the power divergences it is �nite only for the
powers 0 < � < 1). Thus, without any further speci�cation or restriction, the disparities, divergences or
distances D�(Pn; P0) are meaningless for statistical inference. Hence for the rest of the chapter we adopt
the following convention.

Convention 4.1 The disparities, divergences or distances D�(Pn; P0) are replaced by their discrete
versions (4.4) resulting from �nite partitions P = fC1; :::; Ckg of the observation space X by the quan-
tization rule (4.3). Further, we restrict ourselves to real valued observations and assume interval
observation spaces X = (a; b) � R on which statistical models Pn; P; P0 are given by d.f.�s Fn; F; F0
where both F and F0 are assumed to have positive densities f > 0 and f0 > 0: Moreover, we restrict
ourselves to the interval partitions

P = fCj := (cj�1; cj ] : 1 � j � kg for a = c0 < c1 < ::: < ck�1 < ck = b (4.8)

where the quantization rule (4.3) takes on the form

p = (pj := F (cj)� F (cj�1) : 1 � j � k) ; (4.9)

pn = (pnj := Fn(cj)� Fn(cj�1) : 1 � j � k) (4.10)

p0 = (p0j := F0(cj)� F0(cj�1) : 1 � j � k) : (4.11)

By (4.4), the disparities, divergences or distances D�(pn;p0) depend on the frequencies of
the observations x1; x2; :::; xn in the intervals of the partition P but not on the order of these obser-
vations. Therefore the vector (x1; x2; :::; xn) of observations can be replaced by the order statistics
(xn:1; xn:2; :::; xn:n): Further, the hypothetical model F0, which is compared with the alternative
model F or the empirical model Fn, is known and by the assumptions the function F0(y) is strictly
increasing on the observation space X = (a; b). Hence it can be used to transform in a one-to-one man-
ner this observation space into the simple standardized observation space Y = (F0(a); F0(b)) = (0; 1)
commonly used in the literature dealing with testing hypotheses H0 : F0 against alternatives A : F: The
d.f. F governs in an i.i.d. manner the random observations X1; X2; :::; Xn generating the realizations
x1; x2; :::; xn. In this new observation space we deal with the ordered observations

F0(a) := 0 = Y0 < Y1 := F0(Xn:1) � ::: � Yn := F0(Xn:n) < 1 = Yn+1 := F0(b) (4.12)

and with the hypotheses H0 : F0(Q0); alternatives A : F (Q0) and e.d.f.�s Fn(Q0), all de�ned on [0; 1] by
means of the increasing hypothetical percentile function (brie�y, h.p.f.)

Q0(y) = F�10 (y) on [0; 1]: (4.13)

This motivates the next convention which will also hold for the remainder of this chapter.
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Convention 4.2 We assume without loss of generality that we test the hypothesis of uniformityH0 : F0
with constant p.d.f. f0(y) = 1 and linear h.p.f. Q0(y) = F0(y) = y on (0; 1) against the alternative A : F
with a p.d.f. f(y) positive on (0; 1) and the percentile function Q(y) = F�1(y) increasing on [0; 1]: The
testing is based on the e.d.f. Fn(y) on [0; 1] with jumps 1=n at the points

0 < Y1 � ::: � Yn < 1 (4.14)

obtained by ordering the random observations

X1; X2; :::; Xn i.i.d. by the p.d.f. f(y) on the observation space (0; 1): (4.15)

Alternatively, the testing can be based on the one-to-one related empirical percentile function (brie�y,
e.p.f.)

Qn(y) = F�1n (y) = inffz 2 (0; 1] : Fn(z) � yg on [0; 1]: (4.16)

Consequently

Qn

�
j

n

�
= Yj ; 0 � j � n (4.17)

and the disparities, divergences or distances D�(P; P0) and D�(P0; P ) are given by the formulas

D�(P; P0) =

Z 1

0

� (p) dy and D�(P0; P ) =

Z 1

0

p�

�
1

p

�
dy: (4.18)

This is the the basic conceptual framework for the rest of the chapter.

The information available to the statistician when he faces the problem of testing hypothesis H0 : F0
is represented by the d.f.�s Fn and F0. It is used by him to calculate the decision tool D�(pn;p0) or
Tn = mnD�(pn;p0) using the rules (4.4), (4.10) and (4.11). Naturally, this procedure is simpli�ed if
either the distribution p0 or pn is uniform,

p0 =

�
1

k
;
1

k
; :::;

1

k

�
or pn =

�
1

k
;
1

k
; :::;

1

k

�
for some k > 1 (4.19)

where k may increase with the sample size n, i.e. the dependence

k = kn (4.20)

is admitted but the subscript n is suppressed unless it plays an explicit role. These two possibilities are
mutually exclusive for large k and are studied separately in the next two subsections.

4.1 Partitioning by hypothetical percentiles

Let us start with the �rst case considered in (4.19). It takes place if the partition (4.8) is de�ned by the
k + 1 cutpoints

cj = Q0

�
j

k

�
=
j

k
; 0 � j � k for the h.p.f. Q0 (c.f. (4.13)); (4.21)

which are the hypothetical percentiles of the uniformly distributed orders 0; 1=k; :::; (k � 1)=k; 1.
Thus, the partitioning by uniformly distributed hypothetical percentiles leads to the discrete alternative,
empirical and hypothetical distributions

p =

�
pj := F

�
j

k

�
� F

�
j � 1
k

�
: 1 � j � k

�
; (4.22)

pn =

�
pnj := Fn

�
j

k

�
� Fn

�
j � 1
k

�
: 1 � j � k

�
; (4.23)

p0 =

�
p0j := F0

�
j

k

�
� F0

�
j � 1
k

�
=
1

k
: 1 � j � k

�
(4.24)
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respectively. Based on formula (4.4), the disparities, divergences or distances D�(pn;p0) and D�(p0;pn)
are given by the formulas

D�(pn;p0) = k
kX
j=1

� (kpnj) (cf. (4.23), (4.24)) (4.25)

and

D�(p0;pn) =
kX
j=1

pnj�

�
1

kpnj

�
(cf. (4.23), (4.24)) (4.26)

where the latter is meaningful only if all pnj are positive.

The probability that all pnj are positive decreases when k increases and vanishes for k � n + 1,
since there are only n observations, i.e. Fn has at most n jumps. Therefore the version (4.26) is not
used in the sequel and attention is restricted to the goodness-of-�t criteria (4.25) or their scaled versions
T�;n = nD�(pn;p0). The above introduced concrete statistics (2.16), (2.21), (2.23), (3.11) and (3.25) are
examples of such scaled versions if their cells Cj are speci�ed by the cutpoints (4.21).

4.2 Partitioning by empirical percentiles.

In this subsection we study the second possibility considered in (4.19). It takes place if the partition (4.8)
is de�ned by the same number of k + 1 cutpoints

0 = c0 < c1 < ::: < ck�1 < ck = 1 (4.27)

as in Subsection 4.1, but the �rst k of them are the empirical percentiles of the uniformly distributed
orders 0; 1=k; :::; (k � 1)=k, i.e.,

cj =

8<: Qn
�
j
k

�
; 0 � j � k � 1 for the e.p.f. Qn (c.f. (4.16))

1 for j = k
(4.28)

This formula is not a complete parallel to (4.21) of the previous subsection, because here the last cutpoint
is ck = 1 and not Qn (k=k) = Qn (1) = Yn < 1: (See in this respect Remark 4.2.1 below.) The cutpoints
formula simpli�es when k divides n: Unless otherwise explicitly stated, we assume that

k = kn =
n

m
for m = mn = 1; 2; ::: (cf. (4.20)). (4.29)

In accordance with the agreement above, the subscript n is suppressed in kn;mn and all expressions
involving kn;mn unless it is explicitly needed to display.

By the de�nitions of Fn; F0, under the assumption (4.29) the cutpoints formula (4.28) implies

cj = Qn

�
jm

n

�
= Yjm; 0 � j � k � 1 (4.30)

so that
F0(cj) = cj = Yjm; 0 � j � k � 1: (4.31)

Since ck = 1 so that Fn (ck) = 1 = km=n, we get from (4.10) and (4.30)

pn =

�
pnj :=

jm

n
� (j � 1)m

n
=
m

n
=
1

k
: 1 � j � k

�
. (4.32)

Similarly, from (4.11) and (4.31) we get

p0 =
�
p0j := Yjm � Y(j�1)m : 1 � j � k � 1 and p0k := 1� Y(k�1)m

�
: (4.33)

In this formula p0k := 1� Y(k�1)m cannot be replaced by p0k := Ykm � Y(k�1)m because ck = 1 = F0(ck)
is almost surely greater than Ykm = Yn: Notice that under the assumption (4.29) the cutpoints formula
(4.28) implies that each cell of the partition of the interval contains exactly m observations.
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By (4.4), the disparities, divergences or distances D�(pn;p0) and D�(p0;pn) of the distributions
(4.32) and (4.33) are given by the formulas

D�(pn;p0) = D��(pn;p0) for ��(t) = t�

�
1

t

�
on (0;1) (4.34)

where

D�(p0;pn) =
k�1X
j=1

1

k
�
�
k(Yjm � Y(j�1)m)

�
+
1

k
�
�
k(1� Y(k�1)m)

�
=

m

n

kX
j=1

�
� n
m
(Yjm � Y(j�1)m)

�
+
m

n
�
� n
m
(1� Y(j�1)m)

�
: (4.35)

The version (4.34) leads to a too complicated formula in terms of the original function �: Thus for
theoretical analysis as well as for practical applications it is more convenient to work with version (4.35).
The stochastic di¤erences Yjm � Y(j�1)m are generally referred to as the m-spacings.

The disparities, divergences or distances (4.35) de�ne the m-spacings based goodness-of-�t statistics

T
(m)
� = T

(m)
�;n = nD�(p0;pn)

= m

k�1X
j=1

�
� n
m
(Yjm � Y(j�1)m)

�
+m�

� n
m
(1� Y(k�1)m)

�
: (4.36)

Remark 4.2.1 If in full analogy with (4.21) the cutpoint scheme (4.27, (4.28) is replaced by

cj = Qn

�
j

k

�
; 0 � j � k for the e.p.f. Qn (c.f. (4.16)

then ck = Yn < 1, so that the components p0j = F0(cj) � F0(cj�1) = cj � cj�1 of the hypothetical
distribution p0 satisfy the strict inequality

kX
j=1

p0j = ck = Yn < 1

i.e. they cannot be normalized to 1. This can be solved by adding the cutpoint ck+1 = 1 when the
collection of cutpoints

0 = c0 < c1 < ::: < ck�1 < ck < ck+1 = 1

generates hypothetical and empirical distributions p0 and pn with k + 1 components, both normalized
to 1. However, then the last component of the empirical distribution is

pn;k+1 = Fn(ck+1)� Fn(ck) = Fn(1)� Fn(Yn) = 0

so that the empirical distribution is not uniform and its components are not strictly positive. Nevertheless,
for � 2 �div the �-divergences D�(p0;pn) remain to be well de�ned by the formula

D�(p0;pn) = D��(pn;p0) =
kX
j=1

1

k
�
�
k(Yjm � Y(j�1)m)

�
+ (1� Yn)��(0) (4.37)

for the function ��(t) de�ned in (4.34) (for details see e.g. Liese and Vajda (2006)). Thus the �-divergences
with �nite limit ��(0) = limt!1 �(t)=t de�ne meaningful spacings-based divergence statistics

T
�(m)
� = T

�(m)
�;n = m

kX
j=1

�
� n
m
(Yjm � Y(j�1)m)

�
+ (1� Yn)��(0): (4.38)
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In what follows we would like to deal with statisticsT (m)� for more general functions � than just � 2 �div .
Therefore we prefer the more universal statistics (4.36).

In the remaining sections we study the properties and applications of the simple-spacings based
variants

T� = T�;n =
n�1X
j=1

� (n(Yj � Yj�1)) + � (n(1� Yn�1)) (4.39)

of the statistics T (1)� in (4.36), i.e. T (m)� when m = 1. We decompose them into representative parts
R� and an asymptotically vanishing parts V� as follows:

T� = R� + V� with R� =
n+1X
j=1

� (n (Yj � Yj�1)) ; � 2 � (4.40)

and
V� = � (n(1� Yn�1))� � (n(Yn � Yn�1))� � (n(1� Yn)) (4.41)

where we put as before Yn+1 = 1.

Example 4.2.1 The power divergences D�(p0;pn) of orders � 2 R from Example 3.1.3 de�ne spacings-
based statistic T� = T�;n obtained by inserting in (4.39) the generating power functions �� or ~��. For
example, the power divergence of order 2 with the generating function �2(t) = (t� 1)2=2 given in (3.14)
de�nes the spacings-based statistic T2 = T2;n with the representative part

R2 = R2;n =
1

2

n+1X
j=1

(n(Yj � Yj�1)� 1)2 =
n2

2

n+1X
j=1

�
Yj � Yj�1 �

1

n

�2
: (4.42)

Obviously, this is a spacings-based version of the classical Pearson goodness-of-�t statistic

Tn = nD2(pn;p0) =
1

2
n�2(pn;p0) (see (2.16)).

Similarly, the power divergence of order 0 with the generating function �0(t) = � ln t from (3.15) de�nes
the spacings-based statistic T0 = T0;n with the representative part

R0 = R0;n = �
n+1X
j=1

ln (n (Yj � Yj�1)) ; (4.43)

which is nothing but a spacings-based version of the classical likelihood ratio goodness-of-�t statistic

Tn = nD0(p0;pn) = nD1(pn;p0) (see (3.11)).

5 Goodness-of-�t statistics based on spacings

5.1 Objectives of the following sections

This chapter is devoted to the systematic analysis of the disparity and divergence spacings statistics and
to their comparisons with the spacings statistics studied in the previous literature. The primary aim is to
show that while the motivation of the latter is not based on the concept of similarity between empirical
and hypothetical distributions, this idea is in fact hidden somewhere behind because they asymptotically
coincide with the former. Therefore the �rst objective is to prove the mutual asymptotic equivalence
of the disparity and divergence spacings statistics introduced in this chapter and the spacings statistics
known from the literature. This equivalence helps to understand why many ad hoc de�ned spacings-based
statistics exhibit desirable asymptotic properties. The secondary aim is to present in a relatively simple
uni�ed manner the asymptotic properties of the many various types of spacings statistics studied in the
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previous literature. Thus the second objective of this chapter is to prove the consistency and asymptotic
normality under �xed and local alternatives for a su¢ ciently wide variety of our spacings-type disparity or
divergence statistics. These results are important for applications of the spacings statistics in the testing
of goodness-of-�t, and they may also be useful in the estimation of functionals of the type of �-disparity
or �-divergence. The last aim is to apply this asymptotic theory to the spacings-based power divergence
statistics and compare their asymptotic parameters and properties for various divergence orders � 2 R.
Therefore the third objective is the explicit evaluation of the asymptotic parameters of spacings-based
power divergence statistics and an analysis of their properties including their continuity in the parameter
� 2 R. To achieve all these objectives within a reasonably limited space, we pay the main attention to
the simple spacings with m = 1 and, starting with Section 6, we deal exclusively with simple spacings.

It seems that the spacings-based goodness-of-�t test statistics given in the literature lacked sofar the
motivation of taking into account the notion of disparity between hypothetical and empirical distributions
p0 and pn. This contrasts with the goodness-of-�t statistics based on deterministic partitions speci�ed
by the uniformly distributed constant cutpoints cj given in (4.21) and by the related random frequency
counts (4.23), where the typical statistics, including the most classical Pearson statistic T1 and likelihood
ratio statistic T0, can easily be recognized as appropriately scaled power divergences between p0 and pn.

The classical spacings-based statistics, however, appear to have been motivated rather by other con-
siderations such as the analytic simplicity of formulas and the possibility to achieve desired asymptotic
properties. In fact, as pointed out by Pyke(1965) in his landmark paper, most of the classical spacings-
based statistics were proposed within the context of testing the randomness of events in time, in which
di¤erences between successive order statistics (spacings) were considered to play an important role. Also,
in the period 1946-1953, when most of the classical tests based on spacings were proposed, research
focused mostly on studying the behavior of these tests under the null-hypothesis, rather than under an
alternative, making it unnecessary to motivate the test statistic from the point of view of divergence
or disparity. Although the concept of dispersion of spacings around the uniform distribution has been
mentioned as a motivation for a test statistic by some authors, all known spacings-based statistic are close
to the divergence statistic T (m)� of (4.36) or T� of (4.39) for some � in �div , but none of them happens
to be precisely equal to this divergence statistic. This situation is illustrated in the next examples for
the simple-spacings statistics T� = T�;n with � 2 � given by (4.40) as the sum R� + V� where the
representative terms

R� =
n+1X
j=1

� (n (Yj � Yj�1)) ; � 2 � (5.1)

slightly di¤er from majority of the statistics known from the literature, which are of the form

S� =
n+1X
j=1

� ((n+ 1) (Yj � Yj�1)) ; � 2 � (5.2)

where � is often from the divergence subclass �div � �. Hence the departure from the divergence
statistics is mainly the scaling of the spacings by n + 1 instead of n: A possible explanation for this
is suggested in the next example. We prove in the next section that the departure from the divergence
statistics as such is asymptotically negligible in the sense that the so-called asymptotically vanishing term

V� = � (n(1� Yn�1))� � (n(Yn � Yn�1))� � (n(1� Yn)) (5.3)

really vanishes asymptotically and the modi�cation of the scaling factor by n=(n + 1) is asymptotically
negligible.

Example 5.1.1 The �rst known statistic of the type (5.2) is

G =
n+1X
j=1

(Yj � Yj�1)2 (5.4)
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of Greenwood (1946) who devised it for testing the hypothesis that the intervals between successive events
in epidemiology are exponentially distributed. Obviously,

(n+ 1)2G = S� =
n+1X
j=1

� ((n+ 1) (Yj � Yj�1)) (5.5)

for �(t) = t2 from �. Therefore the Greenwood proposal was neither the divergence nor the disparity
spacing statistic. However, Irwin in the discussion of Greenwood (1946), and Kimball (1947) suggested
to replace G by the modi�cation of the power divergence spacing statistic (4.42) de�ned by

K =
n+1X
j=1

�
Yj � Yj�1 �

1

n+ 1

�2
=

2

(n+ 1)2

n+1X
j=1

~�2 ((n+ 1) (Yj � Yj�1)) (5.6)

for �2(t) = (t�1)2=2 from �div which is the same function that generated the quadratic spacing statistics
R2 in (4.42). The motivation of the Irwin and Kimball statistic K may be deduced from the inequality

E
n+1X
j=1

�
Yj � Yj�1 �

1

n+ 1

�2
� E

n+1X
j=1

(Yj � Yj�1 � E(Yj � Yj�1))2

where the inequality is strict unless

E (Yj � Yj�1) =
1

n+ 1
for 1 � j � n+ 1

which in turn takes place if and only if F = F0. Therefore the minimal expected values of the Kimball
criterion K characterize the hypothesis F0 and the larger expected values are reserved for the alternatives
F 6= F0.

Example 5.1.2 Another classical spacing statistic which is a slight modi�cation of the power divergence
spacings statistic (4.43) was de�ned by Moran (1951) as

M = S�0 = �
n+1X
j=1

ln ((n+ 1) (Yj � Yj�1)) =
n+1X
j=1

�0 ((n+ 1) (Yj � Yj�1)) (5.7)

where �0(t) = � ln t from �div generated the logarithmic spacing statistics R0 in (4.43). Van Es (1992)
considered a statistic VE which for m = 1 takes on the form

VE = 1

n� 1

nX
j=2

ln ((n+ 1) (Yj � Yj�1)) =
1

1� nS�0 +
1

1� n ln
Y1

1� Yn
: (5.8)

Hence (1� n)VE is a modi�cation of (5.7).

5.2 Types of statistics studied

As stated above, the analysis of the spacings-based disparity or divergence statistics generated by func-
tions � 2 � is in the rest of this chapter restricted to the case of the simple spacings with m = 1. In
the previous subsection we de�ned for these spacings three di¤erent statistics, viz. T� of (4.39), R� of
(5.1), and S� of (5.2). The �rst of these was obtained by application of the partition of the observation
space by n empirical percentiles of equidistant orders to the disparity or divergence D�(F0; Fn) of the
hypothetical and empirical distribution. The remaining two were modi�cations of T� representing the
spacing statistics from the pioneering work of Greenwood, Kimball and Moran. In the present subsection
some other modi�cations are introduced, which represent the spacing statistics known from the literature
subsequent to the mentioned pioneering work. Since those statistics generally used the m-spacings, we
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return temporarily in this subsection to our disparity or divergence statistics T (m)� from (4.36) based on
m-spacings, in order to make the comparisons more realistic and credible.

Let us start with Del Pino�s (1979) class of statistics of the form

S
(m)
� = m

kX
j=1

�

�
n+ 1

m
(Ymj � Ym(j�1))

�
(5.9)

where it is assumed that n + 1 is divisible by k and that m = (n + 1)=k � 1: Here the notation in
our chapter is consistent in the sense that (5.9) reduces for m = 1 to the formula for S� in (5.2). Del
Pino found �(t) = t2 to be optimal among the functions � considered by him. The class (5.9) was
later investigated by Jammalamadaka et al. (1989) and many others. Jammalamadaka et al studied the
asymptotics of S(m)� for m tending slowly to in�nity as n ! 1. In such case these asymptotics depend
only on the local properties of �(t) in the neighborhood of t = 1, and in this regard a wide class of
functions � can be admitted, including those with �00(1) = 0, so that they can be used for functions
which generate disparities or divergences. However, as we have seen in Examples 5.1.1 and 5.1.2 for some
� 2 �div ; the statistics (5.9) di¤er from those in (4.36). Other examples of well-known spacings-based
statistics which di¤er from our spacings-type �-disparity statistics (4.36) will be given below. Therefore it
is important to look at the problem whether the classical spacings-based statistics and our spacings-type
disparity statistics are asymptotically equivalent for n!1; and, if yes, then in what precise sense.

Let us return to our spacings-type �-disparity statistic T (m)� introduced in (4.36). Notice that T (m)�

cannot be e¢ cient when m > 1, because then it ignores the observations Ymj+r for 1 � j � k � 1 and
1 � r � m � 1. Shifting the orders j=k of the percentiles in (4.30) by a quantity depending on r; we
obtain the shifted empirical percentiles

c
(r)
j = Qn

�
mj + r

n

�
= Ymj+r; 1 � j � k � 1; 1 � r � m� 1 (5.10)

as cutpoints and, instead of p0j = Ymj � Ym(j�1) = p
(0)
0j , the shifted hypothetical probabilities p

(r)
0j =

Ymj+r�Ym(j�1)+r, while still preserving the uniform shifted empirical probabilities p(r)nj = 1=k = m=n on

the cells (c(r)j�1; c
(r)
j ]; 1 � r � m� 1. Replacing each term �( nm (Ymj � Ym(j�1))) in (4.36) by the average

1

m

m�1X
r=0

�
� n
m
(Ymj+r � Ym(j�1)+r)

�
(5.11)

of all �(np(r)0j =m) for 0 � r � m� 1, we get a potentially more e¢ cient version of T
(m)
� , namely

T̂
(m)
� =

n�1X
j=m

�
� n
m
(Yj � Yj�m)

�
+m�

� n
m
(1� Yn�m)

�
(5.12)

which for m = 1 reduces to T� of (4.39), so that the notation of our chapter is again consistent.

A similar procedure can be carried out for S(m)� of (5.9), which involves the observations Ymj for
1 � j � k, but ignores the observations Ymj+r for 0 � j � k� 1 and 1 � r � m� 1. A similar procedure
can be carried out for S(m)� of (5.9), which involves the observations Ymj for 1 � j � k, but ignores the
observations Ymj+r for 0 � j � k � 1 and 1 � r � m � 1. Replacing each term �(n+1m (Ymj � Ym(j�1)))
in (5.9) by the average of the m terms �(n+1m (Ymj+r � Ym(j�1)+r)), 0 � r � m � 1, and excluding the
terms containing unde�ned expressions (that is, the terms Ymk+r � Ym(k�1)+r; 1 � r � m � 1, where
mk + r > n+ 1 ), we get a similar possibly more e¢ cient version

Ŝ
(m)
� =

n+1X
j=m

�

�
n+ 1

m
(Yj � Yj�m)

�
(5.13)
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of Del Pino�s statistic S(m)� of (5.9). Notice that ifm = 1, then Ŝ(m)� of (5.13) reduces to S� of (5.2) above,
so that our notation is in this sense still consistent. The statistics (5.13) are formally well de�ned for all
1 � m � n, and not only for m = (n+ 1)=k � 1 corresponding to the integers 1 < k � n+ 1. Both Del
Pino�s statistic S(m)� of (5.9) and Ŝ(m)� of (5.13) can be viewed as generalizations of S� of (5.2) from the
case of simple spacings to that of m-spacings, but whereas (5.9) involves non-overlapping m-spacings,
(5.13) uses m-th order overlapping spacings. Cressie (1976, 1979) and Ekström (1999) are among the
authors dealing with the statistics (5.13) for �xed m � 1 and eventually also for m slowly tending to 1
when n!1.

In spite of the fact that, when carrying out our analysis above, we went through several important
papers (and many other ones listed in these as references), covering altogether four decades of research
on spacings-based statistics, we did not in this literature come across the framework of the statistics T�
and its modi�cation R� when restricting ourselves to the simple spacings with m = 1. To make this
connection, take into account that if m > 1, and in particular if m!1, then the statistics (5.13) assign
more weight to the central spacings than to those in the tails. To avoid this, Hall (1986) proposed to
wrap the observations Y1; Y2; :::; Yn around the circle of unit circumference and to de�ne the m-spacings
Ym+j � Yj for arbitrary 1 � m � n and j as the distance between observations Yj and Yj+m on this
circle. This leads to the following two possible extensions of the ordered observations Y1; : : : ; Yn.

(i) By the formula
Yn+j = 1 + Yj for j = 1; 2; :::; n (5.14)

where the previous dummy observation Y0 = 0 is suppressed and the other dummy observation Yn+1 = 1
is rede�ned in accordance with (5.14) by Yn+1 = 1 + Y1, leading to the m-spacing Yj+m � Yj to be
equal to 1 + Ym+j�n � Yj if n + 1 �m � j � n, and remaining unaltered, i.e. equal to Yj+m � Yj , if
1 � j � n�m:

(ii) By the alternative formula

Yn+j = 1 + Yj�1 for j = 0; 1; � � � ; n (5.15)

where the dummy observations Y0 = 0 and Yn+1 = 1 are placed on the circle as well, resulting in the
m-spacing Yj+m � Yj to be de�ned as 1 + Ym+j�n�1 � Yj if n+ 2�m � j � n and remaining equal to
Yj+m � Yj if 0 � j � n+ 1�m.

Both these extensions of the ordered observations Yj beyond j > n allow to add in (5.13) the tail evidence
missing there by adding to the substituted averages (5.11) also the previously excluded terms. Depending
on whether we use (5.14) or the alternative extension (5.15), we get in this manner two di¤erent extensions
of (5.13), namely

~S
(m)
� =

nX
j=1

�

�
(n+ 1)

Yj+m � Yj
m

�
where Yj+m = 1 + Yj+m�n (5.16)

if j = n+ 1�m; � � � ; n (c.f. (5.14)), or

~~S
(m)
� =

nX
j=0

�

�
(n+ 1)

Yj+m � Yj
m

�
where Yj+m = 1 + Yj+m�n�1 (5.17)

if j = n+ 2�m; � � � ; n; Y0 = 0 and Yn+1 = 1 (c.f. (5.15)).

The statistics from the class (5.16) were studied for example by Hall (1986) and Morales et al. (2003),
while those from the class (5.17) were investigated among others by Cressie (1978), Rao and Kuo (1984),
Ekström (1999) and Misra and van der Meulen (2001) and others cited there.

Recently Jimenez and Shao (2009) studied for convex functions � the statistics

JS
(m)
� = m

kX
j=1

�

�
n+ 1

m

�
F (Ymj)� F (Ym(j�1))

��
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for m;n such that n+ 1 is divisible by k and m = (n+ 1)=k � 1: Under the hypothetic p.d.f.�s F (y) = y

considered in this chapter these statistics reduce to the statistic S(m)� of Del Pino�s (5.9).

As said above, this chapter deals only with the ordinary spacings where m = 1: We have seen that
then the statistic T� takes on the form presented in (4.39) and both S(m)� of (5.9) and Ŝ(m)� of (5.13)
reduce to the statistic

S� =
n+1X
j=1

� ((n+ 1) (Yj � Yj�1)) ; where Yn+1 = 1 and Y0 = 0 (5.18)

introduced in (5.2). Consequently, JS(m)� reduces for m = 1 to S� too. It is easy to see that in this case

also ~~S(m)� of (5.17) reduces to S�. However, ~S
(m)
� of (5.16) does not do so unless � is linear. Indeed, if

m = 1, ~S(m)� reduces to

~S� =
n�1X
j=1

� ((n+ 1) (Yj+1 � Yj)) + � ((n+ 1) (Y1 + 1� Yn)) (5.19)

which coincides with

S� =
n�1X
j=1

� ((n+ 1) (Yj+1 � Yj)) + � ((n+ 1)Y1) + � ((n+ 1) (1� Yn)) (5.20)

only if
� ((n+ 1)Y1) + � ((n+ 1) (1� Yn)) = � ((n+ 1) (Y1 + 1� Yn))

which takes place with a positive probability only for linear �.

In addition to the statistics T�, S�, R� and ~S� introduced above, we will study two more single-
spacings statistics. First, we introduce another new type of spacings-type disparity statistic denoted by
~T�. To obtain it, we rede�ne the partition Q = f(0; Y1]; : : : ; (Yn�2; Yn�1]; (Yn�1; 1)g of (0; 1) considered
in (4.33). The new partition ~Q of (0; 1) is obtained by rearranging the n intervals of the partition Q into
n new intervals by the rule

(0; Y1] 7! (0; Y1] [ (Yn; 1) and (Yn�1; 1) 7! (Yn�1; Yn] (5.21)

while keeping the remaining intervals (Yj�1; Yj ]; 2 � j � n � 1 unaltered. This new partition ~Q leads
to the modi�ed hypothetical distribution

~p0 = (~p01 = Y1 + 1� Yn; ~p02 = Y2 � Y1; : : : ; ~p0n = Yn � Yn�1)

which similar to (4.32) preserves the original uniform empirical distribution pn on the cells, as each of
the new n intervals still contains exactly one of the observations Y1; : : : ; Yn. Therefore the new partition
leads to the new spacings-type disparity statistics

~T� = nD� (~p0;pn) =
nX
j=1

�(n~p0j)

=
nX
j=2

� (n(Yj � Yj�1)) + � (n(Y1 + 1� Yn)) (5.22)

which di¤er from T� of (4.39). Applying the functions

�(n)(t) = �

�
n+ 1

n
t

�
(5.23)

we obtain the useful relations
~S� = ~T�(n) and S� = R�(n) : (5.24)
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In addition to the statistics R�; S�; ~S�; T�; ~T�; de�ned above in (5.1), (5.2) , (5.19), (4.39), and (5.22),
respectively, we use in this chapter also the auxiliary spacings-based statistics

~R� =
n�1X
j=1

� (n(Yj+1 � Yj)) = R� � �(nY1)� � (n(1� Yn)) (5.25)

investigated previously by authors neglecting the tail probabilities such as for example Hall (1984). Thus
we can conclude this subsection by introducing the sets

U� =
n
R�; ~R�; S�; ~S�; T�; ~T�

o
; � 2 � (5.26)

of the spacings-based statistics of the special types introduced here and studied in the following sections.
The statistics from U� are representative in the sense that they cover almost all spacings based statistics
studied in the previous literature as special cases when the attention is restricted to the simple spacings.
The only exception known to us are the statistics

�R� = ~R�n =
~S� � � ((n+ 1) (Y1 + 1� Yn)) (5.27)

studied by van Es (1992), see e.g. (5.8). However, it is seen from the proof of Assertion 6.1.1 below that
the asymptotic properties of �R� are the same as the asymptotic properties of the statistics from the class
U� studied in the rest of this chapter.
The set � of di¤erentiable functions � : (0;1) ! R was introduced in the Subsection 3.1 by mild

additional conditions guaranteeing the existence of the integrals

D�(P; P0) =

Z
p0�

�
p

p0

�
d� (cf. (3.7))

called disparities in the wide sense, which were justi�ed as measures of disparity, divergence or distance
only for � from the subclasses �disp � �div of � . On the other hand, the functions � which de�ned
the statistics U� 2 U� considered in the cited literature imposed on the functions � : (0;1) ! R
usually somewhat di¤erent additional conditions, namely the continuity and the continuous second order
di¤erentiability in the neighborhood of 1 with �00(1) 6= 0 and �(1) = 0. Therefore in the sequel we study
the class of statistics

U� =
n
R�; ~R�; S�; ~S�; T�; ~T�

o
; � 2 �0 (5.28)

where �0 is the set of all continuous functions � : (0;1) 7! R which are twice continuously di¤erentiable
in a neighborhood of 1 with �00(1) > 0 and �(1) = 0. The replacement of � by �0 means no loss of
generality and guarantees that the class (5.28) contains all disparity and divergence statistics R�; S�; ~S�;
T�; ~T�; de�ned above or, more generally, that

�div��disp � �0: (5.29)

For references later, we summarize the de�nition formulas

R� = R�;n =
n+1X
j=1

� (n (Yj � Yj�1)) (5.30)

S� = S�;n =
n+1X
j=1

� ((n+ 1) (Yj � Yj�1)) (5.31)

(e.g. Jammalamadaka et al. (1989), Jiménez and Shao (2009))

T� = T�;n =
n�1X
j=1

� (n(Yj � Yj�1)) + � (n(1� Yn�1)) = nD�(p0;pn) (cf. (4.36), (4.39)) (5.32)

~R� = ~R�;n =

nX
j=2

� (n(Yj � Yj�1)) (5.33)
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(e.g. Hall (1984), Cressie (1976) - (1979))

~S� = ~S�;n =
nX
j=2

� ((n+ 1) (Yj � Yj�1)) + � ((n+ 1) (Y1 + 1� Yn)) (5.34)

(e.g. Hall (1986), Morales et al. (2003))

~T� = ~T�;n =
nX
j=2

� (n(Yj � Yj�1)) + � (n(Y1 + 1� Yn)) = nD�(~p0;pn) (cf. (5.22)) (5.35)

where in all these formulas Y0 = 0; Yn+1 = 1 and

Yj = F0(Xn:j) for Xn:j � F; 1 � j � n and H : F0: (5.36)

In the next subsection and in the rest of the chapter we present a series of assertions about the
properties of the statistics (5.30) - (5.35). Some of these assertions follow from the papers dealing with
general m-spacing statistics cited in this and the following sections. Our simple proofs are to some extent
based on the arguments established there.

5.3 Structural spacings statistics

In this subsection and in the rest of this chapter we study the subclasses

U� =
n
R�; ~R�; S�; ~S�; T�; ~T�

o
for � 2 �2 or � 2 �1 where �2 � �1 � �0 (5.37)

of the class (5.28) of statistics de�ned by (5.30) - (5.36). Here �1 � �0 is the subset of functions � 2 �0
for which there exist functions �; �; � : (0;1) 7! R satisfying the functional equation

�(st) = �(s)�(t) + �(t)�(s) + �(s) (t� 1) for all s; t 2 (0;1): (5.38)

The narrower class �2 consists of all � 2 �1 which admit functions �; �; � : (0;1) 7! R satisfying the
stronger functional equation

�(st) = �(s)�(t) + �(s) + �(s) (t� 1): (5.39)

Assertion 5.3.1 The functions �; � and � are continuous on (0;1) and satisfy the relations

�(1) = �(1) = 1 and �(1) = 0: (5.40)

Proof The continuity of � and � can be obtained by putting t = 2 and t = 3, and that of � by putting
s = 2 in (5.38). If we put s = 1 in (5.38) or (5.39) and use the assumption �(1) = 0, then we obtain that
for all t 2 (0;1)

(�(1)� 1)�(t) + �(1) (t� 1) = 0:

This contradicts the assumption �00(1) > 0, unless �(1) = 1 which implies also �(1) = 0. By putting t = 1
in (5.38) we �nd that �(1) = 1.

Assertion 5.3.2 Every � 2 �1 is di¤erentiable on (0;1), the corresponding functions � and � are
di¤erentiable at 1, and for every t > 0

�0(t) = �0(1)
�(t)

t
+ �0(1)

�(t)

t
+ �0(1)

t� 1
t

: (5.41)
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Proof Putting s = 1 + " and

��(") =
�(1 + ")� �(1)

"
; ��(") =

�(1 + ")� �(1)
"

we obtain from (5.38) for every t > 0 and " close to 0

t
�(t+ "t)� �(t)

"t
= ��(")�(t) +

�(1 + ")� �(1)
"

�(t) + ��(") (t� 1): (5.42)

Since � is di¤erentiable in a neighborhood of 1, we have for t close to 1

��(")�(t) + ��(") (t� 1) = t �0(t)� �0(1) �(t) + o(") as "! 0:

By the assumptions concerning �, �(t) is not linear in a neighborhood of t = 1. Therefore the last
relation implies that the limits of ��(") and ��(") for "! 0 exist, that is,

��(") = �0(1) + o(") and ��(") = �0(1) + o(") as "! 0:

Now (5.41) follows from (5.42) for all t > 0.

Example 5.3.1 The function �(t) = (1 � t)=t, t > 0, belongs to � and satis�es (5.39) for �(t) = 1=t
and �(t) = 0. Therefore it belongs to �2 � �. The function �(t) = (1 � t)2=t, t > 0, belongs to �
too and satis�es (5.39) for the same �(t) as above and �(t) = t � 1=t. Therefore it belongs to �2. The
functions de�ned on (0;1) by

��(t) =
t� ln t

(2�� 1) ; � 2 R� f 12g

belong to � and satisfy (5.38) for �(t) = �(t) = t� and �(t) = 0. Therefore

f�� : � 2 R� f 12gg � �1

and �0 2 �2. But �1 satis�es also (5.39) for �(t) = t and �(t) = t ln t and therefore �1 belongs to �2.

5.4 Organization of the following sections

The rest of the chapter deals with the asymptotic properties and applications of the classes of statis-
tics considered in (5.37). Let us mention brie�y how the following sections are organized. Section 6

establishes the asymptotic equivalence of the statistics from the class U� =
n
R�; ~R�; S�; ~S�; T�; ~T�

o
,

� 2 �1, and presents the general asymptotic theory of the structural statistics from the class U� =n
R�; ~R�; S�; ~S�; T�; ~T�

o
; � 2 �2. Section 7 applies this theory to and makes it precise for the power

divergence statistics of Example 3.1.3 and comments on comparable results in the previous literature.
Section 8 presents a universal program for evaluation of power divergence spacings statistics and their
applications in testing the goodness-of-�t. Finally, Section 9 contains proofs of the assertions of Sections
6 and 7.

6 Asymptotic properties of structural statistics

In the remainder of this chapter the observations are assumed to be distributed on (0; 1] in two possible
ways:

(i) under a �xed alternative,

(ii) under local alternatives.
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Case (i) means that the observations are distributed by a �xed distribution function F � f with f
positive and continuous on [0; 1]. Case (ii) means that the observations from samples of sizes n = 1; 2; : : :
are distributed by distribution functions

F (n)(x) = F0(x) +
Ln(x)

4
p
n

= x+
Ln(x)

4
p
n

(6.1)

on [0; 1]; where the functions Ln : R 7! R are continuously di¤erentiable, with Ln(0) = Ln(1) = 0, and
with derivatives `n(x) = L0n(x) tending on [0; 1] to a continuously di¤erentiable function ` : R 7! R
uniformly in the sense that

sup
0�x�1

j`n(x)� `(x)j = o(1) as n!1: (6.2)

The two possibilities (i) and (ii) are not mutually exclusive: their conjunction is �under the hypothesis
H0 �where F (x) = F0(x), f(x) = f0(x) = I [0;1](x) and Ln(x) = 0 on R for all n. This means that the
asymptotic results obtained under local alternatives for `(x) of (6.2) being identically equal to 0 must
coincide with the results obtained under the �xed alternative for F (x) = F0(x).

6.1 Asymptotic equivalence

The theorems below demonstrate that if � 2 �2 de�nes a �-divergence or �-disparity, then the statistics
S�; ~S�; R� and ~R�, which are formally not scaled �-divergences or �-disparities of the hypothetical and
empirical distributions F0 and Fn, share the most important statistical properties with the statistics
T� and ~T�, which are scaled �-divergences or �-disparities of this type . Therefore they provide a key
argument for the thesis of the present chapter formulated in Section 2, that the spacings-based goodness-
of-�t statistics considered in the previous literature actually measure a disparity between the hypothetical
and empirical distributions F0 and Fn, although this was possibly not so intended by the various authors.
But the main purpose of the following theorems is to present a systematic asymptotic theory for the whole
set of statistics (5.37) and to demonstrate that the small modi�cations distinguishing these statistics from
one another are asymptotically negligible. The restriction to the functions from �2 or even �1 is not
essential �it only simpli�es the proof of the next theorem.

Assertion 6.1.1. Consider the observations under �xed or local alternatives, and the set of statistics
fR�; ~R�; S�; ~S�; T�; ~T�g de�ned in (5.1), (5.25), (5.2), (5.19), (4.39), and (5.22). If � 2 �1, then for any
statistic U� 2 fR�; S�; ~S�; T�g

U� � ~R� = Op(1) as n!1; (6.3)

and, if � 2 �2, then
S� �R� = "nR� + �n and ~S� � ~T� = "n ~T� + �n (6.4)

where "n = o(1) and �n = �0(1) + o(1) as n!1.

The proofs of this assertion and of the remaining ones of the chapter are deferred to Section 9.

6.2 Assumptions and notations

In this subsection we study the same spacings-type �-disparity statistics R�; ~R�; S�; ~S�; T� and ~T�, de�ned
by (5.1), (5.25), (5.2), (5.19), (4.39), and (5.22), for � from �2 or �1 as in the previous subsection.
Unless otherwise explicitly stated, these statistics are assumed to be distributed under the �xed or local
alternatives introduced as case (i) and case (ii) in the beginning of this section .

For every continuous function  : (0;1) 7! R we de�ne the condition

lim
t!1

t��j (t)j = lim
t#0

t� j (t)j = 0 for some � � 0 and � < 1 (6.5)

and the integral

h i = h (t)i =
Z 1

0

 (t) e�t dt: (6.6)
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Obviously, if (6.5) holds then h i exists and is �nite.

Let � 2 �1 satisfy (6.5) and let

� = ��; � = �� and � = �� (6.7)

be the corresponding functions satisfying the functional equation (5.38). Then all functions

 (t) = �(ts)� �(t) �(s); s > 0;

satisfy (6.5) too, and by (5.38) the linear combinations

 (t) = �(t)�(s) + �(t) (s� 1); s > 0;

of functions �(t) and �(t) also satisfy (6.5). Since �(s) is not linear in the neighborhood of s = 1, it
follows from here that �(t) and �(t) themselves satisfy (6.5). Therefore the integrals h�i and h�i exist and
are �nite.

For the �xed alternatives F � f we shall consider the linear combinations

��(f) = h�iD�(F0; F ) + h�iD�(F0; F ) (6.8)

where

D�(F0; F ) =

Z 1

0

f(x)�

�
1

f(x)

�
dx (6.9)

and

D�(F0; F ) =

Z 1

0

f(x)�

�
1

f(x)

�
dx (6.10)

are disparities of the distributions F0 and F , well de�ned by (4.1) under the present assumptions about
the densities f0 and f , and are �nite. If �(t) is convex on (0;1), or �(t)��0(1) (t�1) is monotone on (0; 1)
and (1;1), then D�(F0; F ) is a nonnegative �-divergence or �-disparity of F0 and F . Similarly, if �(t) is
convex on (0;1), or �(t)� �(1)� � 0(1) (t� 1) is monotone on (0; 1) and (1;1), then the ��-divergence
or ��-disparity of F0 and F for

��(t) = �(t)� �(1) = �(t)� 1 (cf (5.40))

satis�es the relation D��(F0; F ) = D�(F0; F )� 1: Hence the formula for ��(f) can be written for every
� 2 �1 in the more intuitive form

��(f) = h�iD�(F0; F ) + h�i [D��(F0; F ) + 1] (6.11)

where � and �� depend on � as speci�ed above, and D�(F0; F ), D��(F0; F ) are divergences or disparities
between the hypothesis F0 and the alternative F for typical � 2 �1. For � 2 �2 � �1 it holds that
� = 1; so that (6.11) then simpli�es to

��(f) = h�iD�(F0; F ) + h�i: (6.12)

In particular for � 2 �2
��(f0) = h�i: (6.13)

6.3 Consistency under hypotheses and �xed alternatives

The consistency results of this section are in fact laws of large numbers for the spacings based disparity and
divergence statistics. They are used in the following sections dealing with asymptotic normality under
local and �xed alternatives. Note that under �xed alternatives they provide tools for nonparametric
estimates of disparities or divergences. Such tools were used e.g. for nonparametric estimation of entropy
by Vasicek (1976) or by Dudewicz and van der Meulen (1987). Our main result is formulated for �xed
alternatives.
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Assertion 6.3.1 Consider the observations under a �xed alternative F � f with f positive and con-
tinuous on [0; 1]; and denote by U� any statistic from the class fR�; ~R�; T�; ~T�g. If � 2 �1 satis�es (6.5),
then

U�
n

p�! ��(f) for n!1 (6.14)

where ��(f) is given by (6.11). If � 2 �2 satis�es (6.5), then the asymptotic relation (6.14) remains valid
also for U� = ~S� and U� = S�; and ��(f) is given by the simpler formula (6.12).

Corollary 6.3.1 Under H0 (6.14)) reduces to

U�
n

p�! ��(f0) = h�i =
Z 1

0

�(t) e�t dt for n!1 (6.15)

In the sequel we use the L2-norm

k`k =
�Z 1

0

`2(x) dx

�1=2
and we denote the integral (6.6) usually by h (t)i rather than h i.

6.4 Asymptotic normality under local alternatives

Assertion 6.4.1 Consider the observations under the local alternatives (6.1) with a limit function `(x)
introduced in (6.2), and denote by U� any statistic from the set fR�; ~R�; S�; ~S�; T�; ~T�g. If � 2 �2
satis�es the stronger version of (6.5) with � < 1=2 then

1p
n
(U� � n��)

D�! N(m�(`); �
2
�) as n!1 (6.16)

where
�� = h�(t)i; �2� = h�2(t)i � h�(t)i2 � (ht�(t)i � h�(t)i)

2 (6.17)

and

m�(`) =
k`k2
2

�
ht2�(t)i � 4ht�(t)i+ 2h�(t)i

�
: (6.18)

6.5 Asymptotic normality under �xed alternatives

Let us now consider the �xed alternative F � f de�ned at the beginning of this section under (i), and
� 2 �2 with � = ��, � = ��, satisfying the functional equation (5.39), and denote by �

0; �0; �0 the
derivatives of �; �; � as in Assertion 5.3.2. To express the asymptotic normality under this alternative,
we need auxiliary functions 	i = 	i;� of the variable x 2 (0; 1):

	1(x) = �0(1) h�(t)i f(x) �
�

1

f(x)

�
+ �0(1) f(x)�

�
1

f(x)

�
+
�
�0(1)� �0(1)

�
f(x) + �0(1) (6.19)

	2(x) =
�
h�2(t)i � h�(t)i2

�
f(x) �2

�
1

f(x)

�
+ f(x) �2

�
1

f(x)

�
+2(ht�(t)i � h�(t)i)f(x) �

�
1

f(x)

�
�

�
1

f(x)

�
; (6.20)

	3(x) = (ht�(t)i � h�(t)i)
p
f(x) �

�
1

f(x)

�
+
p
f(x) �

�
1

f(x)

�
; (6.21)

and also

	4(x) =

p
f(x)

F (x)

Z x

0

�
1� F (y) f 0(y)

f2(y)

�
	1(y) dy (6.22)

when the alternative density has a continuous derivative f 0(x) on (0; 1).
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Assertion 6.5.1 Consider the observations under the �xed alternative F � f with f positive and
continuous on [0; 1] and continuously di¤erentiable on (0; 1) with the derivative f 0 bounded. If U� is
a statistic from the set fR�; ~R�; S�; ~S�; T�; ~T�g, and � 2 �2 satis�es the stronger version of (6.5) with
� < 1=2, then

1p
n
(U� � n��(f))

D�! N(0; �2�(f)) as n!1 (6.23)

where ��(f) is given by (6.12) and

�2�(f) =

Z 1

0

	2(x) dx� 2
Z 1

0

	3(x)	4(x) dx+

Z 1

0

	24(x) dx (6.24)

for 	2(x); 	3(x) and 	4(x) de�ned by (6.20)�(6.22).

Remark 6.5.1 Under the hypothesis F0 � f0 = 1 both Assertions 6.4.1 and 6.5.1 deal with the same sta-
tistical model. Therefore, if f = f0, the asymptotic parameters (��; �

2
�) from (6.17) and (��(f0); �

2
�(f0))

from (6.12) and (6.24) must be the same, that is, the equalities

��(f0) = h�i and �2�(f0) = h�2i � h�i2 � (ht�(t)i � h�i)
2

must hold. The �rst equality is clear from (6.13). For f = f0 we get from (9.62) by partial integration

	1(y) = ht�0(t)i = ht�(t)i � h�i for all y 2 (0; 1):

Thus, by (6.22), 	4(x) is under the hypothesis constant, equal to ht�(t)i�h�i. Similarly, by (6.20), (6.21)
and Assertion 5.3.1, 	2(x) = h�2i � h�i2 and 	3(x) = 	4(x). Hence (6.24) implies the desired result

�2�(f0) = 	2(x)� 2	24(x) + 	24(x) = �2�:

Remark 6.5.2 The expressions ��; �
2
� are well de�ned by (6.17) for every continuous function � :

(0;1) 7! R satisfying the condition (6.5) with � < 1=2. If this condition holds for some function
 : (0;1) 7! R, then it holds also for all linear transformations �(t) = a (t) + b(t� 1) + c and

�� = a� + c; �2� = a2�2 : (6.25)

Let us now consider a �xed alternative F � f with the density continuously di¤erentiable on (0; 1). Then,
using expression (9.52) for ��(f), and (9.54)�(9.56) for s

2
i (f), the formulas

��(f) =

Z 1

0

f(x)

�
�

�
t

f(x)

��
dx and �2�(f) = s21(f) + s

2
2(f) + s

2
3(f) (6.26)

de�ne ��(f) and �
2
�(f) for all continuously di¤erentiable functions � : (0;1) 7! R such that both �(t)

and ~�(t) = t�0(t) satisfy (6.5) with � < 1=2. If  is one of the functions satisfying all these conditions
then all linear transformations �(t) = a (t) + b(t� 1) + c satisfy these conditions too and

��(f) = a� (f) + c; �2�(f) = a2�2 (f): (6.27)

Formulas (6.25) and (6.27) are veri�able from the de�nitions mentioned in this remark and are useful for
the evaluation of asymptotic means and variances.

Remark 6.5.3 We observe that the asymptotic results of Assertions 6.3.1, 6.4.1 and 6.5.1 are in each
case for a �xed � the same for any statistic U� from the class of statistics considered, con�rming the
asymptotic equivalence of these statistics.
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7 Asymptotic properties of power spacings statistics

7.1 Power spacing statistics

In the rest of this chapter we deal with and frequently refer to the statistics generated by the power
functions � = ~�� introduced in (3.26), (3.27) as nonnegative linear transforms of the simpler functions
� = �� de�ned by (3.14), (3.15). In order to simplify the notations, we interchange the symbols ��  !
~��; i.e. we use the functions de�ned by

��(t) =
t� � �(t� 1)� 1

�(�� 1) if � =2 f0; 1g; (7.1)

and otherwise by the corresponding limits

�1(t) = t ln t� t+ 1 and �0(t) = � ln t+ t� 1; (7.2)

and their simpler alternatives

~��(t) =
t� � 1
�(�� 1) for � =2 f0; 1g; ~�1(t) = t ln t; ~�0(t) = � ln t: (7.3)

The rest of this chapter pays special attention to the subclass

U� = fR�� ; ~R�� ; S�� ; ~S�� ; T�� ; ~T��g; � 2 R (7.4)

of the spacings-based structural disparity statistics studied in the previous section which are generated
by the power functions � = �� : (0;1) 7! R de�ned for all powers � 2 R in (7.1) and (7.2). It is easy to
verify that these functions belong to the subset �2, that is, they satisfy the functional equation (5.39)
with

�(t) = ��(t) = t� and �(t) = ��(t) =

8<:
t��t
��1 if � 6= 1

lim
�!1

t��t
��1 = t ln t if � = 1

(7.5)

In other words, if � 2 R then

��(st) = s���(t) + ��(s) + (t� 1) �
(

s��s
��1 if � 6= 1

s ln s if � = 1
(7.6)

for all s; t > 0.

It is also easy to verify that the functions � �; � 2 R are convex, belong to �div and de�ne � �-
divergences (or brie�y, �-divergences). Referring to de�nitions (3.1) and (3.2), we introduce the following
simpli�ed notation for these � �-divergences:

D�(p;p0) = D��(p;p0) =
1

�(�� 1)

0@ kX
j=1

p�jp
1��
0j �1

1A = D1��(p0;p) (cf. (3.4))

if � =2 f0; 1g , and

D1(p;p0) = D�1(p;p0) =
kX
j=1

pj ln
pj
p0j

= D0(p0;p)

otherwise. Similarly (cf. (3.2)),

D0(F0; F ) = D�0(F0; F )=

Z 1

0

f ln
f

f0
dx =

Z 1

0

f(x) ln f(x) dx; (7.7)

D1(F0; F ) = D�1(F0; F )=

Z 1

0

f0 ln
f0
f
dx = �

Z 1

0

ln f(x) dx; (7.8)

D�(F0; F ) = D��(F0; F )=
1

�(�� 1)

�Z 1

0

f

�
f0
f

��
dx�1

�
=

1

�(�� 1)

�Z 1

0

f(x)1��dx�1
�

if � =2 f0; 1g: (7.9)
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Similar to the corresponding � �-divergences themselves, the � �-divergence statistics T�� ;
~T�� and S��

are not altered if the nonnegative convex functions � � 2 �2 are replaced by the convex functions ��(t)
from �2 given by (7.3).

For illustration and references later we present formulas for selected statistics from the class (7.4). In
the �rst set are our true divergence statistics

T�� = T��;n =
1

�(�� 1)

24n�
0@n�1X
j=1

(Yj � Yj�1)� + (1� Yn�1)�
1A� n

35 (7.10)

T�1 = T�1;n =
n�1X
j=1

n(Yj � Yj�1) ln [n(Yj � Yj�1)] + n(1� Yn�1) ln [n(1� Yn�1)] (7.11)

T�0 = T�0;n = �
n�1X
j=1

ln [n(Yj � Yj�1)]� ln [(1� Yn�1)] (7.12)

(cf. (5.32)). In the second set are the modi�ed divergence statistics

S�� = S��;n =
1

�(�� 1)

24(n+ 1)� n+1X
j=1

(Yj � Yj�1)� � n� 1

35 (7.13)

S�1 = S�1;n =
n+1X
j=1

(n+ 1)(Yj � Yj�1) ln [n(Yj � Yj�1)] (7.14)

S�0 = S�0;n = �
n+1X
j=1

ln [(n+ 1)(Yj � Yj�1)] (7.15)

(cf. (5.31)) extensively used in the literature (cf. Jammalamadaka et al. (1986), (1989), Misra and van
der Meulen (2001), Jiménez and Shao (2009) and others cited there). In the third set are again the true
divergence statistics

~T�� =
~T��;n =

1

�(�� 1)

24n�
0@ nX
j=2

(Yj � Yj�1)� + (Y1 + 1� Yn)�
1A� n

35 (7.16)

~T�1 =
~T�1;n =

nX
j=2

n(Yj � Yj�1) ln [n(Yj � Yj�1)] + n(Y1 + 1� Yn) ln [n(Y1 + 1� Yn)] (7.17)

~T�0 =
~T�0;n = �

nX
j=2

ln [n(Yj � Yj�1)]� ln [n(Y1 + 1� Yn)] (7.18)

(cf. (5.35)) slightly di¤erent from those used by Hall (1986), Morales et al. (2003), Vajda and van der
Meulen (2006), Vajda (2007) and others cited there (they di¤er by the normalizing constant n instead of
n+ 1).

Example 7.1.1 For � = 2 we obtain the statistic

S�2 =
1

2

24(n+ 1)2 n+1X
j=1

(Yj � Yj�1)2 � (n+ 1)

35 = n+ 1

2
[(n+ 1)G � 1] (7.19)

where G is the Greenwood statistic of Example 5.1.1.

Since the general asymptotic theory of the statistics U� 2 U� speci�ed by (7.4) is covered by Assertion
5.3.2 and Assertions 6.3.1�6.5.1, the assertions that follow in this section are basically their corollaries.
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However, they bring explicit formulas and additional important new results, the proofs of which are not
trivial. These proofs are partly based on a continuity theory for the asymptotic parameters

��(f) = ���(f); �
2
�(f) = �2��(f); �� = ��� ; �

2
� = �2�� and m�(`) = m��(`); (7.20)

de�ned by (6.26), (6.17) and (6.18), as functions of the structural parameter � 2 R. Such a theory enables
us to avoid a direct calculation of the asymptotic parameters at some �0 2 R, if these calculations are
tedious and the asymptotic parameters are known at the neighboring parameters �. This theory is
summarized in Assertion 7.1.2 below using Assertion 7.1.1. In Assertion 7.1.2 we take the representations
(6.12) and (6.24) for ���(f) and �

2
��
(f) rather than (6.26).

Assertion 7.1.1 Let g(y) be a continuous positive function on a compact interval [a; b] � R and
�(u; v) a continuous function of variables u; v 2 R. Furthermore let, for all � from an interval (c; d) � R,
 � : (0;1) 7! R be convex or concave functions di¤erentiable at some point t� 2 (0;1). If the values
 �(t), t 2 (0;1), and the derivatives  0�(t�) depend continuously on � 2 (c; d), then for every �0 2 (c; d)

lim
�!�0

bZ
a

�(g;  �(g)) dy =

bZ
a

�(g;  �0(g)) dy: (7.21)

Assertion 7.1.2 The asymptotic parameters ��; �
2
� and m�(`), speci�ed by (7.20), (6.17) and(6.18),

are continuous in the variable � 2 (�1=2;1). If the density f satis�es the assumptions of Assertion 6.3.1,
then the asymptotic mean ��(f) speci�ed by (7.20) and (6.12) is continuous in the variable � 2 (�1;1).
If f satis�es the stronger assumptions of Assertion 6.5.1, then the asymptotic variance �2�(f) speci�ed
by (7.20) and (6.24) is continuous in the variable � 2 (�1=2;1).

7.2 Consistency

In the assertion below and in the rest of the chapter, we use the gamma function of the variable � 2 R
and the Euler constant,

�(�) =

Z 1

0

t��1 e�t dt and 
 = 0:577 : : : : (7.22)

Assertion 7.2.1 Consider the observations under the �xed alternative F � f assumed in Assertion
6.3.1 and denote by U� any statistic from the class U� of (7.4). If � > �1, then

U�
n

p�! ��(f) as n!1 (7.23)

for
��(f) = D�(F0; F ) �(�+ 1) + ��; (7.24)

where

�0 = 
; �1 = 1� 
; and �� =
�(�+ 1)� �(1)

�(�� 1) for � =2 f0; 1g; (7.25)

and D�(F0; F ) are the ��-divergences (7.7)-(7.9). The ��-divergences are zero if and only if F = F0, so
that under the hypothesis H0 : F = F0

��(f0) = ��; � 2 R: (7.26)

Both parameters �� and ��(f) are continuous in the variable � 2 (�1;1) and satisfy the inequality
��(f) � ��, which is strict unless F = F0.

Since �(�+ 1) = �(�� 1) �(�� 1), (7.25) and (7.24) can be replaced for � =2 f0; 1g by

�� = �(�� 1)�
1

�(�� 1) and ��(f) = �(�� 1)
Z 1

0

f1�� dx� 1

�(�� 1) : (7.27)
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Assertion 7.2.1 can be illustrated by Table 7.2.1 , in which actual values of the parameters �� and ��(f)
are presented for selected parameters �. In this table, f denotes any density considered in Assertion
6.3.1, and the expressions for D�(F0; F ), H(F0; F ), and �2(F0; F ) can be easily discerned from those
used in Examples 3.1.1 and 3.1.3, thereby replacing P and P0 by F0 and F and sums by integrals.

Table 7.2.1 Values of �� and ��(f) for selected � > �1:

� �� ��(f)

� 12
4
3 (
p
� � 1) := 1:030

p
�D�1=2(F0; F ) + ��1=2 =

4
p
�
3

R 1
0
f3=2 dx� 4

3

0 

:
= 0:577 D0(F0; F ) + �0 =

R 1
0
f ln f dx+ 


1
2 4� 2

p
�
:
= 0:455 2

p
�H(F0; F ) + �1=2 = 4� 2

p
�
R 1
0

p
fdx

1 1� 
 :
= 0:423 D1(F0; F ) + �1 = 1� 
 �

R 1
0
ln f dx

3
2

p
� � 4

3

:
= 0:439 3

p
�
4 D3=2(F0; F ) + �3=2 =

p
�
R 1
0
dxp
f
� 4

3

2 1
2 = 0:500 �2(F0; F ) + �2 =

R 1
0
dx
f �

1
2

5
2

p
�
2 �

4
15

:
= 0:620 15

p
�

8 D5=2(F0; F ) + �5=2 =
p
�
2

R 1
0

dx
f3=2
� 4

15

3 5
6

:
= 0:833 6D3(F0; F ) + �3 =

R 1
0
dx
f2 �

1
6

7.3 Asymptotic normality under local alternatives

Assertion 7.3.1 Consider the observations under the local alternatives (6.1) with the limit function
`(x) introduced in (6.2), and denote by U� any statistic from the class U� of (7.4). If � > �1=2, then

1p
n
(U� � n��)

D�! N(m�(`); �
2
�) as n!1 (7.28)

where the parameters ��, m�(`), and �2� are continuous in the variable � 2 (�1=2;1) , and are given
by (7.25) and the formulas

m�(`) =
k`k2
2
�(�+ 1) (7.29)

�2� =
�(2�+ 1)� (�2 + 1)�2(�+ 1)

�2(�� 1)2 for � =2 f0; 1g (7.30)

and

�20 =
�2

6
� 1; �21 =

�2

3
� 3: (7.31)

Assertion 7.3.1 provides the possibility to compute and compare asymptotic relative e¢ ciencies of
tests of the hypothesis H0 : F0 � f0 based on the statistics U� 2 U�, � > �1=2, for various values of �.
The Pitman asymptotic relative e¢ ciency (ARE) of one test relative to another is de�ned as the limit of
the inverse ratio of sample sizes required to obtain the same limiting power at the sequence of alternatives
converging to the null hypothesis. If we de�ne the �e¢ cacies�of the statistics U� 2 U� of Assertion 7.3.1
by

e¤(U�) =
�2(�+ 1)

�2�
=
(m�(`))

2

�2�

�
2

k`k2

�2
for k`k2 6= 0
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then under the assumptions of Assertion 7.3.1 we get in accordance with Section 4 in Del Pino (1979)

ARE(U�1 ; U�2) =
e�(U�1)

e�(U�2)

where U�1 and U�2 are arbitrary statistics from U�1 and U�2 . Notice that arbitrary statistics U� from
the set U�, � �xed, all have the same e¢ cacy (cf. also Remark 6.5.3). In Table 7.3.1 we present the
parameters m�(`), �2� and �

2(� + 1)=�2� for selected values of � > �1=2. This table indicates that
the statistics U2 2 fR�2 ; ~R�2 ; S�2 ; ~S�2 ; T�2 ; ~T�2g are most asymptotically e¢ cient in the Pitman sense
among all statistics U�, � > �1=2. This extends the result on p. 1457 in Rao and Kuo (1984) about the
asymptotic e¢ ciency of the Greenwood statistic G = (2S�2 +n+1)=(n+1)2 (cf. Example 5.1.1 (formula
(5.4)), Example 7.1.1 (formula (7.19)), and formula (7.46) below).

Table 7.3.1 The asymptotic parameters m�(`), �2� and e¤(U�)

for selected statistics U� of Assertion 7.3.1.

� m�(`) �2� e¤(U�)

0 k`k2
2

�2

6 � 1
:
= 0:645 1.550

1
2 k`k2

p
�
4

:
= k`k2

2 � 0:886 16� 5� :
= 0:292 2.690

1 k`k2
2

�2

3 � 3
:
= 0:290 3.448

3
2 k`k2 3

p
�
8

:
= 1:329 32

3 �
13�
4

:
= 0:457 3.871

2 k`k2 = k`k2
2 � 2 1 4.000

5
2 k`k2 15

p
�

16

:
= k`k2

2 � 3:323
128
15 �

29�
16

:
= 2:839 3.890

3 k`k2 3 = k`k2
2 � 6 10 3.600

The general form of the asymptotic normality (7.28), as well as the continuity of the parameters ��,
m�(`) and �2� in � 2 (�1=2;1) established in Assertion 7.3.1 appear to be new results. The special
result for � = 0 also seems to be new. The particular result for � 2 (�1=2;1) � f0; 1g and U� = S��
follows from the asymptotic normality obtained for the statistics

n+1X
j=1

((n+ 1) (Yj � Yj�1))� = �(�� 1)S�� + n+ 1 (7.32)

(cf. (7.47) below) by Del Pino, see p. 1062 in Del Pino (1979). The particular result for � = 1 and the
statistic U1 = S�1 with �1 and �

2
1 given in Tables 7.2.1 and 7.3.1 was obtained previously by Misra and

van der Meulen (2001), who however considered m-spacings for arbitrary m � 1. They compared also
the e¢ ciency of the test statistics for � = 0, � = 1 and � = 2 with a similar conclusion as in Table 7.3.1.

7.4 Asymptotic normality under �xed alternatives

In this subsection we study the asymptotic distributions of the spacings-type power divergence statistics
U� from the sets U� = fR�� ; ~R�� ; S�� ; ~S�� ; T�� ; ~T��g for � > �1=2 under the assumption that the
observations are distributed by a �xed alternative F � f satisfying the assumptions of Assertion 6.5.1.
If � > �1=2 then �� satis�es the assumption of Assertion 6.5.1 too. Therefore this theorem implies that

1p
n
(U� � n��(f))

D�! N(0; �2�(f)) for n!1 (7.33)

where the asymptotic parameters ��(f), �
2
�(f) are given by (7.20). Similarly as in the previous section,

we are interested in explicit formulas for these parameters. By Assertion 6.5.1, the asymptotic mean is
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for all � 2 R given by the explicit formula (7.24) presented in Assertion 7.2.1. The only problem which
remains is the formula for �2�(f), � 2 R.
The functions  �(t) = t� with � > �1=2 satisfy all assumptions of Remark 6.5.2 so that we can

consider the quantities
�2�(f) := �2 �(f); � 2 (�1=2;1)

obtained from the formula introduced there. By (6.27),

�2�(f) =
�2�(f)

�2(�� 1)2 for � 2 (�1=2;1)� f0; 1g: (7.34)

One can �nd on p. 521 of Hall (1984) an expression for �2�(f) for all � 2 (�1=2;1) � f0; 1g, which
for the case m = 1 can be given the form

�2�(f) = �2(�� 1)2
�
�2�

Z 1

0

f1�2�dx+ �2(�+ 1)��(F0; F )

�
(7.35)

where �2� is de�ned by formula (7.30) and

��(F0; F ) =
1

�2

Z 1

0

�
1

(f(x))�
� 1

F (x)

Z x

0

(f(y))1��dy

�2
f(x) dx for � 2 R� f0g: (7.36)

Since Hall (1984) gave no hint about the derivation of his formula, let us mention that (7.35) is obtained
if one substitutes  � for � in the expressions (9.54)�(9.56) below for s

2
j (f), j 2 f1; 2; 3g, given in the

proof of Assertion 6.5.1 ( thereby employing the expression

G(x) = �E(Z�)

Z x

0

�
1� Ff 0

f2

�
1

f��1
dy

= �(�+ 1)

�
(�� 1)

Z x

0

(f(y))1��dy + (f(x))��F (x)

�
for G(x) of (9.53) when � is replaced by  � ), and then forms the sum s21(f) + s22(f) + s23(f). By (7.34)
and (7.35),

�2�(f) = �2�

Z 1

0

f1�2�dx+ �2(�+ 1)��(F0; F ); � 2 (�1=2;1)� f0; 1g: (7.37)

The �nal, intuitively appealing, form of the asymptotic variance

�2�(f) = (1 + 2�(2�� 1)D2�(F0; F ))�
2
� + �

2(�+ 1)��(F0; F ) (7.38)

(with �2�(f0) = �2� given in (7.30)), follows for � 2 (�1=2;1)�f0; 1g by taking into account the formula
for D2�(F0; F ) obtained from (7.9). The peculiar expression ��(F0; F ) �guring in (7.36) and (7.38) can
be better understood if we take into account the following assertion, after which we extend (7.38) to
include also the values � 2 f0; 1g.

Assertion 7.4.1 If the �xed alternative F � f satis�es the assumptions of Assertion 6.5.1, then the
class f��(F0; F ) : � 2 R� f0gg consists of the variances

��(F0; F ) =

Z 1

0

�
f��

�
�
Z 1

0

f��

�
f dy

�2
f dx

=

Z 1

0

�
f��

�

�2
f dx�

�Z 1

0

f��

�
f dx

�2
(7.39)

of the functions f��(X)=� of the random argument X distributed by F: This class is continuously
extended to all � 2 R by introducing the variance

�0(F0; F ) =

Z 1

0

�
ln f �

Z 1

0

(ln f) f dy

�2
f dx

=

Z 1

0

f ln2 f dx�
�Z 1

0

f ln f dx

�2
(7.40)
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of the function ln f(X) of the random argument X introduced above. All ��(F0; F ), � 2 R, are nonneg-
ative measures of divergence of F0 and F , re�exive in the sense that ��(F0; F ) = 0 if and only if F = F0.

We are now in a position to formulate the general results obtained in this chapter regarding the
asymptotic normality of spacings-type power divergence statistics U� from the sets U� =
fR�� ; ~R�� ; S�� ; ~S�� ; T�� ; ~T��g for � > �1=2 under the assumption of the �xed alternative, thereby
specifying the parameters ��(f) and �

2
�(f) in (7.33) for all � > �1=2. Inspecting once more formula

(7.38), we observe that if � > �1=2 di¤ers from 0 and 1, then the asymptotic variance �2�(f) under the
alternative f exceeds the asymptotic variance �2� = �2�(f0) achieved under the hypothesis F0 � f0 by a
linear function of �2� given by

2�(2�� 1)D2�(F0; F )�
2
� + �

2(�+ 1)��(F0; F ) (7.41)

with the coe¢ cients D2�(F0; F ) and ��(F0; F ) positive unless F = F0. By using Assertion 7.1.2, we
can now �nd the formulas for �20(f) and �

2
1(f) which are missing in (7.37) by taking limits in (7.38) for

� ! 0 and � ! 1. Since the limits �20 and �
2
1 were already calculated in Assertion 7.2.1, and the limit

�0(F0; F ) is clear from Assertion 7.4.1, we obtain

�20(f) = lim
�!0

�2�(f) = �20 +�0(F0; F ) (7.42)

and

�21(f) = lim
�!1

�2�(f) = (1 + 2D2(F0; F ))�
2
1 +�1(F0; F ) (7.43)

where (cf. (7.39))

�1(F0; F ) =

Z 1

0

1

f
dx� 1: (7.44)

Together with (7.37), (7.42) and (7.43) provide formulas for �2�(f) for all � > �1=2. It is clear that �20(f)
and �21(f) are of the form (7.38), so that the representation (7.38) holds for all � > �1=2. We summarize
our results as follows.

Assertion 7.4.2 If the alternative F � f satis�es the assumptions of Assertion 6.5.1, then the as-
ymptotic formula of (7.33) is valid for all � > �1=2. The asymptotic means ��(f) are given by the
explicit formulas (7.24)�(7.9). The asymptotic variances �2�(f) are given by (7.38), where the explicit
formulas for D2�(F0; F ) can be found in (7.7)�(7.9), those for �2� in (7.30) and (7.31), and the formulas
for ��(F0; F ) in (7.39) and (7.40). The asymptotic means and variances are continuous in the variable
� 2 (�1=2;1). The asymptotic means satisfy the inequality ��(f) � �� mentioned in Assertion 7.2.1.
The asymptotic variances satisfy the inequality �2�(f) � �2�. Both inequalities become equalities if and
only if F = F0.

Concrete forms of ��(f) and �
2
�(f0) = �2� were illustrated in Tables 7.2.1 and 7.3.1. The next table

illustrates �2�(f) given by (7.38) for arbitrary f satisfying the assumptions of Assertion 6.5.1 and selected
values of �. In each line of Table 7.4.1 two expressions for �2�(f) are given: the �rst one is obtained by
substituting � in (7.38), the second one by actually calculating D2�(F0; F ) and ��(F0; F ) in each case
and putting the results in a closed form. As presumed, for f = 1 the illustrated values reduce to �2� from
Table 7.3.1 .
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Table 7.4.1: Asymptotic variances �2�(f) for selected � > �1=2.

� �2�(f)

0 �20 +�0(F0; F ) = �2

6 � 1 +
R 1
0
f ln2 fdx �

�R 1
0
f ln f dx

�2
1
2 �21

2

+ �
4� 1

2
(F0; F ) = 16� 4� � �

�R 1
0

p
f dx

�2
1 [1 + �2(F0; F )]�

2
1 +�1(F0; F ) =

R 1
0
dx
f

�
�2

3 � 2
�
� 1

2 [1 + 12D4(F0; F )�
2
2 + 4�2(F0; F )] = 2

R 1
0
dx
f3 �

�R 1
0
dx
f

�2
3 [1 + 30D6(F0; F )]�

2
3 + 36�3(F0; F ) = 14

R 1
0
dx
f5 � 4

�R 1
0
dx
f2

�2
7.5 Discussion

The general form of the asymptotic normality (7.33) established by Assertion 7.4.2, as well as the con-
tinuity of the asymptotic means and variances ��(f) and �

2
�(f) in the parameter � > �1=2 proved in

Assertion 7.1.2, and the explicit formulas (7.24) and (7.38) for these parameters for general � seem to be
new results. However, in the references cited in Subsections 5.1 and 5.2 one can �nd particular versions
of these results for some of the statistics U� from the set fR�� ; ~R�� ; S�� ; ~S�� ; T�� ; ~T��g or their linear
functions, and for some � > �1=2 and some distributions F � f:
Let us start with the statistic S�0 proposed by Moran (1951), and denoted by M in Example 5.1.2

(equation(5.7)). The asymptotic normality (7.33) for � = 0, U0 = S�0 and f = f0 = 1, with the
parameters �0(f0) = �0 and �

2
0(f0) = �20 given in Tables 7.2.1 and 7.3.1, was proved by Darling (1953),

yielding speci�cally that under H0

1p
n
(M� n
) D�! N

�
0;
�2

6
� 1
�

as n!1: (7.45)

The result of Darling was extended to all positively valued step functions f on [0; 1] by Cressie (1976),
who also obtained �0(f) and �

2
0(f) given in Tables 7.3.1 and 7.4.1. The result of Cressie was extended by

van Es (1992) to the alternatives f considered in the present chapter which satisfy a Lipschitz condition
on [0; 1], and to all f considered in this chapter by Shao and Hahn (1995). Cressie(1976) and van Es(1992)
studied S�0 as the special case obtained for m = 1 from a more general statistic based on m-spacings
with m � 1. Van Es extended ideas and methods developed for m > 1 by Vasicek (1976) and Dudewicz
and van der Meulen (1981) for proving the consistency and asymptotic normality of a spacings-based
estimator of entropy. The latter authors considered only �(t) = � ln t.
Greenwood (1946) introduced the statistic

G =
n+1X
j=1

(Yj � Yj�1)2 =
2S�2 + n+ 1

(n+ 1)2
; (7.46)

discussed in Examples 5.1.1 and 7.1.1. Kimball (1950) proposed the generalization

n+1X
j=1

(Yj � Yj�1)� =
�(�� 1)S�� + n+ 1

(n+ 1)�
; � > 0; (7.47)

and Darling (1953) proved an asymptotic normality theorem equivalent to (7.33) for U� = S�� , � 2
(0;1)�f1g, and f = f0 = 1. Weiss (1957) extended this result of Darling to positive piecewise constant
densities f . Hall (1984) obtained the asymptotic normality

1p
n

�
~U� � n�(�� 1)��(f)� n

�
D�! N(0; �2(�� 1)2�2�(f)) as n!1 (7.48)
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for all statistics

~U� =
nX
j=2

(n(Yj � Yj�1))�

= �(�� 1) ~R�� � �n(1� Yn + Y1) + n+ �� 1
= �(�� 1) ~R�� + n+Op(1)

with � 2 (�1=2;1) � f0; 1g for any f considered in Assertion 7.4.2. Here ��(f) and �2�(f) are the
same as in Assertion 7.4.2, with ��(f) given by the right-hand side of (7.27) and �

2
�(f) by (7.38), ~R�� is

de�ned as in (5.25) with � = ��, and the Op(1) statement follows from the proof of Assertion 6.1.1. In
fact, this result of Hall (1984) was one of the arguments used in the proof of Assertion 7.4.2.

The statistic S�1 was proposed by Misra and van der Meulen (2001), who proved the asymptotic
normality (7.33) for U1 = S�1 and any f considered in Assertion 7.4.2, with the parameters �1(f) and
�21(f) given in Tables 7.2.1 and 7.3.1, yielding the result

1p
n

�
S�1 � n

�
1� 
 �

Z 1

0

ln f dx

��
D�! N

�
0;

Z 1

0

�
�2

3
� 2
�
dx

f
� 1
�

(7.49)

as n ! 1. We see that the present Assertion 7.4.2 uni�es and extends the results proved separately in
the literature in three di¤erent situations for two particular statistics from the set (7.4). The formulas for
all asymptotic parameters ��(f) and �

2
�(f) of the statistics U� are shown to follow via the asymptotic

equivalence of these statistics (cf. Assertion 6.1.1) and the continuity of these parameters in � (cf.
Assertion 7.1.2) from Hall�s formula (cf. (7.48)) for the asymptotic parameters of ~U� with � 2 (�1=2;1)
di¤erent from 0 and 1.

8 PODISTAT program package

This section presents a computer program package PODISTAT for evaluation of power divergence sta-
tistics. It consists of three MATLAB based functions for evaluation of three selected families of spacings
based statistics parametrized by � 2 R from the class (7.4) of Section 7. Two of them are the families
of the true divergence statistics T��;n and

~T��;n proposed in this chapter, and the third one is one of the
families of classical spacings based statistic studied in this chapter, namely S��;n: The statistics T��;n,
S��;n and

~T��;n were explicitly de�ned for all � 2 R by the formulas (7.10) - (7.18). The programs are
illustrated by applications to the models introduced in Section 2 for the data of Tables 1.1 and 1.2.

Input parameters of the mentioned MATLAB functions are the row vector of observed data X, the
string de�nition of the hypothetical distribution function F0 and the order alpha of the statistic.

1. Evaluation of the statistic T��;n given by (7.10) - (7.12) and denoted as function T = Tpdt.

function T = Tpdt(X, F0, alpha)
% This function compute the Goodness-of-fit statistic based on
% the power-divergences.
%
% Use: Tpdt(X, F0, {alpha})
% x row vector; observed data
% F0 string: hypothetical cumulative distribution distribution of vector x
% {alpha} number: from interval (-1/2, inf) order of power-divergence
% (optional, default = 2)
%
% Example: Tpdt(X, �normal_cdf(x, 0, 1)�, 1.5)
eps = 1.E-4;
if (nargin<2), error(�Use: Tpdt(x, F0, {alpha})�); end
Xsize = size(X); if (Xsize(1)~=1), error(�The first parameter is not a row vector�); end
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n = Xsize(2);
if (n<3), error(�The number of the observations is too small�); end
if (nargin<3), alpha = 2; end for (i=1:n)

x = X(i);
% small �x� is required in hypothetical cdf definition string F0

Y(i) = eval(F0);
end Y = [0 sort(Y) 1]; dY = diff(Y(1:n)); if (abs(alpha)<eps)
% equation 7.12

T = -sum(log(n*dY))-log(n*(1-Y(n)));
elseif (abs(1-alpha)<eps)
% equation 7.11

T = log(n*dY)*(n*dY)�+log(n*(1-Y(n)))*n*(1-Y(n));
else
% equation 7.10

T = (sum((n*dY).^alpha)+(n*(1-Y(n)))^alpha-n)/alpha/(alpha-1);
end return

2. Evaluation of the statistic S��;n given by (7.13) - (7.15) and denoted as function S = Spdt.

function S = Spdt(X, F0, alpha)
% This function compute the Goodness-of-fit statistic based on
% the power-divergences.
%
% Use: Spdt(X, F0, {alpha})
% x row vector; observed data
% F0 string: hypothetical cumulative distribution distribution of vector x
% {alpha} number: from interval (-1/2, inf) order of power-divergence
% (optional, default = 2)
%
% Example: Spdt(X, �normal_cdf(x, 0, 1)�, 1.5)
eps = 1.E-4;
if (nargin<2), error(�Use: Spdt(X, F0, {alpha})�); end
Xsize = size(X);
if (Xsize(1)~=1), error(�The first parameter is not a row vector�); end
n = Xsize(2);
if (n<3), error(�The number of the observations is too small�); end
if (nargin<3), alpha = 2; end
for (i=1:n)

x = X(i);
% small �x� is required in hypothetical cdf definition string F0

Y(i) = eval(F0);
end
Y = [0 sort(Y) 1];
dY = diff(Y);
if (abs(alpha)<eps)
% equation 7.15

S = -sum(log((n+1)*dY));
elseif (abs(1-alpha)<eps)
% equation 7.14

S = log((n+1)*dY)*((n+1)*dY)�;
else
% equation 7.13

S = (sum(((n+1)*dY).^alpha)-n-1)/alpha/(alpha-1);
end
return
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3. Evaluation of the statistic ~T��;n given by (7.16) - (7.18) and denoted as function TW = TWpdt.

function TW = TWpdt(X, F0, alpha)
% This function compute the Goodness-of-fit statistic based on
% the power-divergences.
%
% Use: TWpdt(X, F0, {alpha})
% x row vector; observed data
% F0 string: hypothetical cumulative distribution distribution of vector x
% {alpha} number: from interval (-1/2, inf) order of power-divergence
% (optional, default = 2)
%
% Example: TWpdt(X, �normal_cdf(x, 0, 1)�, 1.5)
eps = 1.E-4;
if (nargin<2), error(�Use: TWpdt(X, F0, {alpha})�); end
Xsize = size(X);
if (Xsize(1)~=1), error(�The first parameter is not a row vector�); end
n = Xsize(2);
if (n<3), error(�The number of the observations is too small�); end
if (nargin<3), alpha = 2; end
for (i=1:n)

x = X(i);
% small �x� is required in hypothetical cdf definition string F0

Y(i) = eval(F0);
end
Y = [0 sort(Y) 1];
dY = diff(Y(2:n+1));
if (abs(alpha)<eps)
% equation 7.18

TW = -sum(log(n*dY))-log(n*(Y(2)+1-Y(n+1)));
elseif (abs(1-alpha)<eps)
% equation 7.17

TW = log(n*dY)*(n*dY)�+log(n*(Y(2)+1-Y(n+1)))*n*(Y(2)+1-Y(n+1));
else
% equation 7.16

TW = (sum((n*dY).^alpha)+(n*(Y(2)+1-Y(n+1)))^alpha-n)/alpha/(alpha-1);
end
return

Example 8.1 Applicability of the PODIST package was veri�ed by evaluating all three statistics in the
domain �1 < � � 3 for the empirical distributions resulting from the Pearson crab measurement data of
Table 1.1 and for the hypothetic distributions given by the mixed generalized lambda models MixGLD
of Example 2.2.1. The problem faced here is that the data in this table are in fact discrete, obtained by
quantization of the original continuous measurement outcomes. Due to this, the majority of the formally
evaluated spacings is zero. These data can be brought into conformity with the assumptions of the present
section by reconstructing the original nonquantized Pearson�s data by a suitable random smoothing. We
used the method of spreading the data from each quantization interval over all this interval uniformly
randomly. The results for various realizations of this smoothing procedure were practically the same.
They are presented in graphical form in Figure 8.1 where the values of statistic T = T��;n are printed
in green, the values of S = S��;n are printed in red and the values of TW = ~T��;n are printed in blue.
Moreover, the asymptotic theory of Section 7 for the statistics from the class (7.4) was applied to evaluate
the critical values as functions �1 < � � 3 for rejection of the MixGLD models at the 95% signi�cance
level. These values are printed in black dotted curves.The results are presented in graphical form in
Figure 8.2 where the values of statistic T = T��;n are printed in green, the values of S = S��;n are
printed in red and the values of TW = ~T��;n are printed in blue. Similarly as in the previous example,
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the asymptotic normality result of Assertion 7.3.1 was applied to evaluate the critical values as functions
�1 < � � 3 for rejection of the MixGLD models at the 95% signi�cance level. These values are printed
in black dotted curves. We see from Figure 8.1 that the di¤erences between the statistics T = T��;n; S
= S��;n and TW = ~T��;n are in the whole domain of powers �1 < � � 3 small. This indicates that the
asymptotic equivalence of Subsection 6.1 works well for the concrete sample size n = 1000 in the case of
Table 1.1. On the other hand, we see from Figure 8.1 that all three continua of statistics presented there
are in the rejection domain of all three statistics of the orders 0 < � � 3 and slightly inside this domain
for the orders �1 < � < 0. The 95% rejection domain is conservative in the sense that it guarantees at
most 0:05 probability of the wrong rejection decision while the alternative non-rejection decision has no
formal guarantee. This means that the statistics the positive orders �nd a su¢ cient stochastic argument
to reject the hypothesis that the crab data under consideration were generated by the MixGLD model
of Example 2.2.1 while the statistics of the negative orders do not go so far and admit (without a formal
stochastic guarantee) this hypothesis. Similarly as in the comments to the tables of Section 2, one has
take into account that the rejection decisions are based here on disparity between the hypothetical d.f.
F and the empirical d.f. Fn.This does not exclude the possibility that the �t between model and data is
decided di¤erently by the criteria taking into account some local properties of F and Fn.

Figure 8.1: Statistics T = T��;n; S = S��;n and TW = ~T��;n for �1=2 < � � 3 and the data and MixGLD
model of Example 2.2.1.

We have seen in the last example that the in�nite families of statistics introduced in this chapter
provides broader picture of agreement or disagreement between statistical model and data than just one
such statistic, thus creating a safer basis for the �nal statistician�s decision. At the same time we have
seen that the continuum of statistics creates a new problem for him, namely to weight eventual di¤erences
between recommendations resulting from di¤erent subclasses of statistics. However, sometimes it is not
so, as it is illustrated by the next example.

Example 8.2 The PODISTAT package was veri�ed also by evaluating its three families of statistics
in the domain �1 < � � 3 for the empirical distributions resulting from the horse kidney measurement
data of Table 1.2 and for the hypothetical distributions given by the mixed generalized lambda models
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MixGLD of Example 2.2.2. The results are presented in graphical form in Figure 8.2 where the values
of statistic T = T��;n are printed in green, the values of S = S��;n are printed in red and the values of
TW = ~T��;n are printed in blue. Similarly as in the previous example, the asymptotic normality result
of Assertion 7.3.1 was applied to evaluate the critical values as functions �1=2 < � � 3 for rejection of
the MixGLD models at the 95% signi�cance level. These values are printed in black dotted curves. We
see from Figure 8.2 that, similarly as in the previous example, the di¤erences between the statistics T
= T��;n; S = S��;n and TW = ~T��;n are negligible for all powers �1 < � � 3 which indicates that the
asymptotic equivalence of Subsection 6.1 works already for moderate sample sizes like n = 43 in the case
of Table 1.2. Further we see from Figure 8.2 that the MixGLD of Example 2.2.2 is not rejected at the
95% signi�cance level. The conservative character of the hypothesis rejection rule mentioned in Example
8.1 is manifested here by much wider non-rejection domain corresponding to the small sample size n = 43
than the domain corresponding to the large sample size n = 1000 in Example 8.1. All statistics under
consideration indicate that the MixGLD of Example 2.2.2 is well �tted to the horse kidney data in the
sense that all of them are localized deeply near the middle of the non-rejection domain.

Figure 8.2: Statistics T = T��;n; S = S��;n and TW = ~T��;n for �1=2 < � � 3 and the data and MixGLD
model of Example 2.2.2.

9 Appendix

Proofs of the assertions stated in this chapter above can be found in Vajda and van der Meulen (2010).
They are presented here for the sake of completeness.

9.1 Proofs for structural spacings statistics

Proof of Assertion 6.1.1 We shall consider the �xed alternative F (x) with a continuous density
f(x) > 0 for 0 � x � 1. For the local alternatives the argument is similar. By inspecting the de�nitions
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of T�; ~T� and R� we see that for (6.3) it su¢ ces to prove that as n!1
�(np01) = Op(1) and �(n(p01 + p02)) = Op(1): (9.50)

It is known (see for example page 208 in Hall (1986)) that p01 = F�1(Z1=Wn+1) and p01 + p02 =
F�1((Z1+Z2)=Wn+1), where Z1; : : : ; Zn+1 are independent standard exponential variables and Wn+1 =
Z1 + � � �+ Zn+1, so that, for n!1,

Wn+1

n

p�! 1 and Vn =
Z1

Wn+1

p�! 0:

Setting

�n =
F�1(Vn)

Vn
=
F�1(Vn)� F�1(0)

Vn
and using the mean value theorem and the assumed continuity of f in the neighborhood of 0, we �nd
that

�n
p�! 1

f(0)
as n!1

where, by assumptions about f , 0 < f(0) <1. Thus

np01 =
n

Wn+1
Z1�n

and, by applying (5.38),

�(np01) = �

�
n

Wn+1

�
�(Z1�n) + �(Z1�n)�

�
n

Wn+1

�
+ �

�
n

Wn+1

�
(Z1�n � 1):

Since Z1�n = Op(1) as n!1, we obtain from Assertion 5.3.1

�(np01) =

�
�

�
n

Wn+1

�
+ �

�
n

Wn+1

�
+ �

�
n

Wn+1

��
Op(1)

= [�(1) + �(1) + �(1) + op(1)]Op(1)

= Op(1) (cf (5.40));

thus proving the �rst relation of (9.50). Replacing Vn = Z1=Wn+1 by Vn = (Z1 + Z2)=Wn+1; and using
the fact that now

(Z1 + Z2)�n = (Z1 + Z2)
F�1(Vn)� F�1(0)

Vn
= Op(1)

we obtain the second relation of (9.50). Next we prove (6.4). From (5.39) we get for any p > 0

�((n+ 1) p) = �

�
n+ 1

n

�
�(np) + �

�
n+ 1

n

�
+ �

�
n+ 1

n

�
(np� 1)

so that

�((n+ 1) p)� �(np) = "n�(np) + �

�
n+ 1

n

�
+ �

�
n+ 1

n

�
(np� 1) (9.51)

where "n = �((n + 1)=n) � 1 = o(1) as n ! 1 by Assertion 5.3.1. Replacing p by the probabilities
p0j = Yj � Yj�1 �guring in the de�nitions of S� and R� (cf. (5.2) and (5.1)), and summing over
1 � j � n+ 1, we get the equality

S� �R� = "nR� + �n

for

�n = (n+ 1)�

�
n+ 1

n

�
� �

�
n+ 1

n

�
=

n+ 1

n

�
�
1 + 1

n

�
� �(1)

1
n

� �
�
n+ 1

n

�
:

By Assertion 5.3.1,
�n = �0(1) + o(1) as n!1:

This completes the proof of the �rst relation in (6.4). The proof of the second relation is the same: we
just replace p in (9.51) by the probabilities ~p0j �guring in the de�nition (5.22) of ~T�.
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Proof of Assertion 6.3.1 By Theorem 1 of Hall (1984), the statistic ~R� de�ned by (5.25) satis�es
under a �xed alternative F � f the relation

~R�
n

p�! ~��(f) =

Z 1

0

f2(x)

�Z 1

0

�(t) e�tf(x)dt

�
dx as n!1

provided � : (0;1) 7! R is continuous and exponentially bounded in the sense that j�(t)j � K(t� + t��)
for some K > 0, � � 0, � < 1; and f is bounded, piecewise continuous, and bounded away from 0 (see
also part (i) of Theorem 3.1 in Misra and van der Meulen (2001)). Thus (6.14) is proved for U� = ~R� as
soon as it is shown that for � 2 �1 the limit ~��(f) coincides with ��(f). By substituting s for tf(x) in
the last integral, and using the assumption 0 < f(x) <1 and the functional equation (5.38),

~��(f) =

Z 1

0

f(x)

�Z 1

0

�

�
s

f(x)

�
e�sds

�
dx (9.52)

=

Z 1

0

f(x)

�Z 1

0

�
�(s)�

�
1

f(x)

�
+ �

�
1

f(x)

�
�(s) + �(s)

�
1

f(x)
� 1
��

e�sds

�
dx

= ��(f) +

Z 1

0

�(s) e�s ds

Z 1

0

(1� f(x)) dx = ��(f):

The extension of (6.14) to U� 2 fT�; ~T�; R�g follows from Assertion 6.1.1. For � 2 �2 the extension of
(6.14) to U� 2 fS�; ~S�g follows from Assertion 6.1.1 too.

Proof of Assertion 6.4.1 For U� = S� the relations (6.16)�(6.18) follow from the result of Kuo and
Rao (1981), cf. also Del Pino (1979) and Theorem 3.2 in Misra and van der Meulen (2001). The extension
to the remaining statistics U� follows from Assertion 6.1.1.

Proof of Assertion 6.5.1 Consider U� = ~R� for � 2 �2. By Assertion 5.3.2, �(t) has a continuous
derivative �0(t) on (0;1). By (5.41), for every c 2 R

tcj�0(t)j � j�0(1)j tc�1j�(t)j+ j�0(1)j tc + j�0(1)j tc�1jt� 1j:

Thus if � satis�es (6.5) with � < 1=2 then there exists � � 0 such that

lim
t!1

t��j�0(t)j = lim
t#0

t1+� j�0(t)j = 0:

This means that under the assumptions of Assertion 6.4.1 there exist c > 0, K > 0 and b < 1=2 such
that for every t 2 (0;1)

j�(t)j � K(ta + t�b) and j�0(t)j � K(ta + t�b�1):

For continuously di¤erentiable functions � satisfying these assumptions, and �xed alternatives with den-
sities f continuously di¤erentiable on (0; 1), it follows from Theorem 2 in Hall (1984) (cf. also part (ii)
of Theorem 3.1 in Misra and van der Meulen (2001)) that U� = ~R� satis�es the relation

1p
n
(U� � n~��(f))

D�! N(0; ~�2�(f)) for n!1

where: (1) the asymptotic mean ~��(f) was presented and proved to be equal to ��(f) in the proof
of Assertion 6.3.1 under assumptions weaker than here and, (2) the asymptotic variance ~�2�(f) can be
speci�ed by means of the standard exponential variable Z and the auxiliary function

G(x) =

Z x

0

�
1� F (y) f 0(y)

f2(y)

�
E

�
Z �0

�
Z

f(y)

��
dy; 0 < x < 1; (9.53)
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as the sum of

s21(f) =

Z 1

0

 
E�2

�
Z

f(x)

�
�
�
E�

�
Z

f(x)

��2!
f(x) dx (9.54)

s22(f) = �2
Z 1

0

E

�
(Z � 1)�

�
Z

f(x)

��
G(x)

F (x)
f(x) dx (9.55)

and

s23(f) =

Z 1

0

�
G(x)

F (x)

�2
f(x) dx: (9.56)

It remains to be proved that for every x 2 (0; 1) 
E �2

�
Z

f(x)

�
�
�
E �

�
Z

f(x)

��2!
f(x) = 	2(x); (9.57)

E

�
(Z � 1)�

�
Z

f(x)

��p
f(x) = 	3(x) (9.58)

and
G(x)

p
f(x)

F (x)
= 	4(x): (9.59)

Indeed, then ~�2�(t) = �2�(f) so that (6.23) is proved for U� = R�, and the extension of (6.23) to the

remaining statistics U� 2 f ~R�; S�; ~S�; T�; ~T�g follows from Assertion 6.1.1. We shall prove (9.57)�(9.59)
in the reversed order. By substituting t = Z=f(y) in (5.41) and taking into account that �(t) = 1 we
obtain

E

�
Z�0

�
Z

f(y)

��
= f(y)E

�
�0(1)�

�
Z

f(y)

�
+ �0(1) + �0(1)

�
Z

f(y)
� 1
��

= f(y)

�
�0(1)E �

�
Z

f(y)

�
+ �0(1) + �0(1)

�
1

f(y)
� 1
��

and, by putting s = 1=f(x) and t = Z in (5.39), we get

�

�
Z

f(x)

�
= �(Z) �

�
1

f(x)

�
+ �

�
1

f(x)

�
+ �

�
1

f(x)

�
(Z � 1): (9.60)

Therefore

E �

�
Z

f(x)

�
= h�i�

�
1

f(x)

�
+ �

�
1

f(x)

�
(9.61)

and, consequently,

E

�
Z �0

�
Z

f(y)

��
= 	1(y): (9.62)

This, together with the de�nitions of 	4(x) and G(x) in (6.22) and (9.53), implies (9.59). Further, from
(9.60) and the de�nition of 	3(x) in (6.21) we get (9.58). Finally, from (9.60), (9.61) and the de�nition
of 	2(x) in (6.20) we obtain (9.57) which completes the proof.

9.2 Proofs for power spacings statistics

Proof of Assertion 7.1.1 By the assumptions about g,

t0 = min
y2[a;b]

g(y) > 0 and t1 = max
y2[a;b]

g(y) <1:

If  �(t) is convex, then for every t 2 [t0; t1] and � 2 (c; d)

 0�(t�) (t� t�) �  �(t) �  �(t0) +  �(t1):
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If  �(t) is concave, then, similarly,

 �(t0) +  �(t1) �  �(t) �  0�(t�) (t� t�):

Therefore in both cases

max
t0�t�t1

j �(t)j � max
�
j �(t0) +  �(t1)j; j 0�(t�)j � jt1 � t0j

	
:

The assumed continuity of  0�(t�) and  �(t0) +  �(t1) in the variable � 2 (c; d) implies that for all
compact neighborhoods N � (c; d) of �0 the constant

k = sup
�2N

max
t0�t�t1

j �(t)j = sup
�2N

max
y2[a;b]

j �(g(y))j

is �nite. Put
K = max

[t0;t1]�[�k;k]
�(u; v):

The function j�(g;  �(g))j of variables (y; �) 2 [a; b] � (c; d) is bounded on [a; b] �N by K < 1. Since
for every y 2 [a; b]

lim
�!�0

�(g;  �(g)) = �(g;  �0(g));

the Lebesgue dominated convergence theorem for integrals implies (7.21).

Proof of Assertion 7.1.2 Since �� = ��(f0) and �
2
� = �2�(f0), where the hypothetical density f0

satis�es the assumptions of Assertions 6.3.1 and 6.5.1, the continuity of �� and �2� follows from the
continuity of ��(f) and �

2
�(f) proved below. By (7.20) and (6.18),

m�(`) =
k`k2
2

�
ht2��(t)i � 4ht��(t)i+ 2h��(t)i

�
where �� is given by (3.26), (3.27), and, by (6.6),

htj��(t)i =
Z 1

0

tj��(t) dH(t); j 2 f0; 1; 2g (9.63)

for H(t) = 1�e�t. All integrals (9.63) are �nite if and only if � 2 (�1;1). Further, for every �xed t > 0

d

d�
���(t) � 0 at any � 2 R: (9.64)

Hence the continuity of the products �htj��(t)i in the variable � 2 R follows from the monotone con-
vergence theorem for integrals, and this implies also the desired continuity of the integrals (9.63) at any
� 2 (�1;1)� f0g. Further, for every �xed t > 0

d

d�
(�� 1)��(t) � 0 for any � 2 R: (9.65)

Hence the continuity of the products (� � 1) htj��(t)i in the variable � 2 R follows as well from the
monotone convergence theorem for integrals. Similarly as above, this implies the continuity of the integrals
(9.63) at the remaining point � = 0. Further, by (7.20) and (6.12),

��(f) = h��iD�(F0; F ) + h��i

where, by (6.6) and (7.5)

h��i =
Z 1

0

t�dH(t) and h��i =
Z 1

0

��(t) dH(t):

These integrals are �nite if and only if � 2 (�1;1). The continuity of h��i at � 2 (�1;1) was proved
above, the continuity of D�(F0; F ) at � 2 R follows from the assumptions about the densities f0 and f
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and from Proposition 2.14 in Liese and Vajda (1987). The continuity of h��i at � 2 (�1;1) follows from
the monotone convergence theorem for integrals applied separately to the integration domains (0; 1) and
(1;1). Finally, let us consider �2�(f) de�ned by (6.19)�(6.24) for � = ��, � = ��, and � = �� given by
(3.26), (3.27) and (7.5). The integrals ht��(t)i, h��(t)i and h�2�(t)i are �nite if and only if � 2 (�1=2;1),
and their continuity at � 2 (�1=2;1) was either proved above or can be proved similarly as above. The
continuity of the integral Z 1

0

�
f�2�

�
1

f

�
+ f�2�

�
1

f

��
dx

at � 2 (�1=2;1) follows from Assertion 7.1.1, which establishes the continuity of the componentR
	2(x) dx of �2�(f) in (6.24). For the continuity of the remaining two components, we take into account

that F (x) > c1x for some c1 > 0 on [0; 1]; because f is bounded away from zero on [0; 1]. Furthermore,
both f(x) and f 0(x) are bounded on [0; 1], so that there exists a constant c2 such that in (6.22)p

f(x)

F (x)

Z x

0

����1� F (y) f 0(y)

f2(y)

���� dy < c2 for all x 2 [0; 1]: (9.66)

Using the function '�(t) = ���(t), which is for every t > 0 continuous and monotone in � 2 R (cf.
(9.64)), we obtain from (6.19)

	1(x) = �h��i f(x)1�� + f(x)'�
�

1

f(x)

�
+ 1� f(x)

where the right-hand side is bounded on [0; 1], locally uniformly in �, and continuous at any � 2 R. By
(6.22) and (9.66), this implies that also 	4(x) is bounded on [0; 1], locally uniformly in �, and continuous
at any � 2 R. Since the integrands inZ 1

0

�p
f��

�
1

f

�
+
p
f��

�
1

f

��
	4 dx and

Z 1

0

	24 dx

are continuous on [0; 1] and locally bounded in the variable � 2 R, the continuity of both these integrals in
the variable � 2 R follows from the Lebesgue dominated convergence theorem for integrals. This clari�es
the continuity of the second and third component of �2�(f) in (6.24) and thus completes the proof.

Proof of Assertion 7.2.1 The functions from the class f�� : � 2 (�1;1)g � �2 satisfy all assump-
tions of Assertion 6.3.1. Hence (7.23) holds for all � > �1 and the limit ��(f) is given in accordance
with (6.12) and (7.5) by the formula

��(f) = h��(t)iD�(F0; F ) + h��(t)i = ht�iD�(F0; F ) + h��(t)i

where ht�i = �(�+ 1) for all � 2 R. If � =2 f0; 1g then

h��(t)i =
1

�(�� 1) ht
� � 1i = �(�+ 1)� �(1)

�(�� 1)

but the expressions
h�0(t)i = h� ln ti and h�1(t)i = ht ln ti

lead to the evaluation of unpleasant integrals. This evaluation can be avoided by employing Assertion
7.1.2. From the continuity of �� = h� �(t)i, it follows that

�j = h�j(t)i = lim
�!j

�(�+ 1)� �(1)
�(�� 1) for j 2 f0; 1g;

where the limit on the right can be easily evaluated by using L�Hospital�s rule and the known formulas
�0(1) = �
, �0(2) = 1�
, thus leading to the values �j , j 2 f0; 1g, given in (7.25). The continuity and the
inequality ��(f) � �� for � 2 (�1;1) follow from (7.24) and (7.25) because D�(F0; F ) is nonnegative
and continuous in � 2 R and �(� + 1) is positive and continuous in � 2 (�1;1). The condition for
equality follows from the fact that D�(F0; F ) is positive unless F = F0.
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Proof of Assertion 7.3.1 Similarly as we applied Assertion 6.3.1 in the proof of Assertion 7.2.1, (7.28)
follows for all � > �1=2 from Assertion 6.4.1. If � =2 f0; 1g, then the expressions for m�(`) and �2� given
in (7.29) and (7.30) follow easily from the formulas given for m��(`) and �

2
��
in Assertion 6.4.1, but the

direct evaluation of mj(`) and �2j from these formulas for j 2 f0; 1g is a somewhat tedious task. However,
by using the continuity of m�(`) and �2� established in Assertion 7.1.2, we obtain mj(`) and �2j given in
(7.29) and (7.31) as the limits

mj(`) = lim
�!j

m�(`) and �2j = lim
�!j

�2� for j 2 f0; 1g;

which expressions can be easily evaluated by using the continuity of the right-hand side of (7.29) and
L�Hospital�s rule, thereby employing the formulas

�(�+ k + 1) = (�+ k) (�+ k � 1) � � � (�+ 1)�(�+ 1);
�00(�+ 1) = 2�0(�) + ��00(�)

and

�00(1) =
�2

6
+ 
2; �00(2) =

�2

6
� 2
 + 
2, �00(3) = �2

3
+ 2� 6
 + 2
2

in addition to the previously used �0(1) = �
 and �0(2) = 1� 
.

Proof of Assertion 7.4.1 If  : [0; 1] 7! R is continuous then by the assumptions about f

inf
x2[0;1]

f(x) > 0 and sup
x2[0;1]

j (x) f(x)j <1

and, consequently, the function

	(x) =

Z x

0

 (y) f(y) dy; x 2 (0; 1)

is well de�ned. Since
d

dx

	2

F
= �

�
	

F

�2
f +

2	 f

F

and
j	(y)j � y sup

x2[0;1]
j (x) f(x)j as well as F (y) � y inf

x2[0;1]
f(x);

the function 	 satis�es the relationZ 1

0

( �	=F )2f dx =
Z 1

0

 2f dx�
�Z 1

0

 f dx

�2
: (9.67)

To this end take into account the relationsZ 1

0

( �	=F )2f dx =

Z 1

0

 2f dx�
Z 1

0

2	 f

F
dx+

Z 1

0

�
	

F

�2
f dx

=

Z 1

0

 2f dx�
�
	2(1)

F (1)
� lim

y#0

	2(y)

F (y)

�
=

Z 1

0

 2f dx� 	
2(1)

F (1)
:

Now, using (9.67) we obtain (7.39) from the de�nition (7.36). Since f is assumed to be bounded and
bounded away from 0,

lim
�!0

��(F0; F ) =

Z 1

0

�
lim
�!0

f�� � 1
�

�
Z 1

0

lim
�!0

f�� � 1
�

f dy

�2
f dx

=

Z 1

0

�
ln f �

Z 1

0

(ln f) f dy

�2
f dx

= �0(F0; F )

which proves the continuity at � = 0. The re�exivity is clear from (7.39) and (7.40).
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Proof of Assertion 7.4.2 The proof should be clear from what was said above. The inequality
�2�(f) � �2� and the condition for equality follow from (7.38), because D2�(F0; F ) and ��(F0; F ) are
nonnegative measures of divergence of F0 and F , which are equal to zero if and only if F = F0, in which
case the excess function (7.41) is 0.
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